
Concept explainers
Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders. Which ones are paramagnetic? Place the species in order of increasing bond length and bond energy.
a. CN+
b. CN
c. CN−
(a)

Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 52E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
No unpaired electron is present; hence it is a diamagnetic molecule.
(b)

Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 52E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
The
(c)

Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 52E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
No unpaired electron is present; hence it is a diamagnetic molecule.
The diatomic configuration of a diatomic species can be determined using the molecular orbital diagram. The difference between the bonding electrons and the non-bonding electrons divided by two gives the bond order of the molecule.
The bond order is inversely proportional to bond length. The molecule having the least bond order value has the greatest bond length.
The bond order is directly proportional to bond energy. The molecule having the least bond order value has the least bond energy.
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Chemistry, 9th, Loose-Leaf + OWLv2 24-Months Printed Access Card
- Add conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forwardIndicate the order of basicity of primary, secondary and tertiary amines.arrow_forward> Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forward
- Please help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forwardපිපිම Draw curved arrows to represent the flow of electrons in the reaction on the left Label the reactants on the left as either "Acid" or "Base" (iii) Decide which direction the equilibrium arrows will point in each reaction, based on the given pk, values (a) + H-O H 3-H + (c) H" H + H****H 000 44-00 NH₂ (e) i Дон OH Ө NHarrow_forward
- 3) Label the configuration in each of the following alkenes as E, Z, or N/A (for non-stereogenic centers). 00 E 000 N/A E Br N/A N/A (g) E N/A OH E (b) Oz N/A Br (d) 00 E Z N/A E (f) Oz N/A E (h) Z N/Aarrow_forward6) Fill in the missing Acid, pKa value, or conjugate base in the table below: Acid HCI Approximate pK, -7 Conjugate Base H-C: Hydronium (H₂O') -1.75 H-O-H Carboxylic Acids (RCOOH) Ammonium (NH4) 9.24 Water (H₂O) H-O-H Alcohols (ROH) RO-H Alkynes R--H Amines 25 25 38 HOarrow_forward5) Rank the following sets of compounds in order of decreasing acidity (most acidic to least acidic), and choose the justification(s) for each ranking. (a) OH V SH я вон CH most acidic (lowst pKa) least acidic (highest pKa) Effect(s) Effect(s) Effect(s) inductive effect O inductive effect O inductive effect electronegativity electronegativity O electronegativity resonance polarizability resonance polarizability O resonance O polarizability hybridization Ohybridization O hybridization оarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





