Concept explainers
For each of the following unbalanced chemical equations, suppose that exactly 15.0 g of each reactant are taken. Using Before− Change−After (BCA) tables, determine which reactant is limiting, and calculate what mass of each product is expected. (Assume that the limiting reactant is completely consumed.)
msp;
msp;
msp;
msp;
(a)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is HCl.
Mass of AlCl3 produce =
Mass of H2 produce =
Explanation of Solution
Number of moles of Al =
Number of moles of HCl =
Possibility I: if Al runs out first
Balanced equation
Before
Change
_________________________________________________________________________
After
Possibility II: if HCl runs out first
Balanced equation
Before
Change
_________________________________________________________________________
After
According to BCA tables, Al is not the limiting reactant as to react with all the Al we need
Mass of AlCl3 produce =
Mass of H2 produce =
(b)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is NaOH
Mass of Na2 CO3 produce =
Mass of H2 O produce =
Explanation of Solution
Number of moles of NaOH =
Number of moles of CO2 =
Possibility I: if NaOH runs out first
Balanced equation
Before
Change
______________________________________________________________________________
After
Possibility II: if CO2 runs out first
Balanced equation
Befor
Change
_________________________________________________________________________
After
According to BCA tables, CO2 is not the limiting reactant as to react with all the NaOH, we need
Mass of Na2 CO3 produce =
Mass of H2 O produce =
(c)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is Pb(NO3 )2 Mass of PbCl2 produce =
Mass of HNO3 produce =
Explanation of Solution
Number of moles of Pb(NO3 )2 =
Number of moles of HCl =
Possibility I: if Pb(NO3 )2 runs out first
Balanced equation
Before
Change
______________________________________________________________________________
After
Possibility II: if HCl runs out first
Balanced equation
Before
Change
_________________________________________________________________________
After
According to BCA tables, HCl is not the limiting reactant as, to react with all the HCl, we need
Mass of PbCl2 produce =
Mass of HNO3 produce =
(d)
Interpretation:
Using Before-Change-After (BCA) tables, the limiting reactant should be determined in the given unbalanced equation, supposing that exactly
Concept Introduction:
To determine how much product can be formed from a given mixture of reactants, we have to look for the reactant that is limiting; the one that runs out first and thus limits the amount of product that can form. The reactant that runs out first limiting the amount of products form is called the limiting reactant or limiting reagent.
To determine limiting reactant, first we should have a balanced equation. Then we include the information in Before-Change-After table.
E.g
Balanced equation
Before
Change
After
Starting amounts of reactants are presented in before row. The change row represents how much of each substance reacts or is produced. The after row represents how much of each substance remain in the final reaction mixture. The ratio of the numbers in the change row has to be the same as the ratio of the coefficients in the balanced equation.
Answer to Problem 50QAP
The limiting reagent is I2.
Mass of KI produce =
Explanation of Solution
Number of moles of K =
Number of moles of I2 =
Possibility I: if K runs out first
Balanced equation
Before
Change
______________________________________________________
After
Possibility II: if I2 runs out first
Balanced equation
Before
Change
______________________________________________________
After
According to BCA tables, K is not the limiting reactant as, to react with all the K, we need
Mass of KI produce =
Want to see more full solutions like this?
Chapter 9 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward. 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardQ2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forward
- Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning