(a)
Interpretation:
The classification of
Concept introduction:
The strong electrolytes are those electrolytes having an aqueous solution as a good conductor of electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte.
Answer to Problem 4ECE
Nitrous acid
Explanation of Solution
The electrolyte is a species that dissolves in solution and conducts electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte. Nonelectrolytes are the species whose aqueous solution is the nonconductor of electricity.
The nitrous acid
Nitrous acid
Nitrous acid
(b)
Interpretation:
The major species in the aqueous solution of
Concept introduction:
The strong electrolytes are those electrolytes having an aqueous solution as a good conductor of electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte.
Answer to Problem 4ECE
The major species in the aqueous solution of
Explanation of Solution
The electrolyte is a species that dissolves in solution and conducts electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte. Nonelectrolytes are the species whose aqueous solution is the nonconductor of electricity.
The compounds which get completely dissolved in water are called major ionic species. The electrolyte or compounds which partially dissolved in water are called minor ionic species.
The nitrous acid
Nitrous acid
Therefore, the major species in the solution is
The major species in the aqueous solution of
(c)
Interpretation:
The minor species in the aqueous solution of
Concept introduction:
The strong electrolytes are those electrolytes having an aqueous solution as a good conductor of electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte.
Answer to Problem 4ECE
The minor species in the aqueous solution of
Explanation of Solution
The electrolyte is a species that dissolves in solution and conducts electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte. Nonelectrolytes are the species whose aqueous solution is the nonconductor of electricity.
The compounds which get completely dissolved in water are called major ionic species. The electrolyte or compounds which partially dissolved in water are called minor ionic species.
The nitrous acid
Nitrous acid
Therefore, the minor species in the solution is
The minor species in the aqueous solution of
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Introductory Chemistry: An Active Learning Approach, 6th + LMS Integrated for OWLv2, 4 terms (24 months) Printed Access Card
- Unshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds. Thus, it is important to know which atoms carry unshared pairs. Use the structural formulas below to determine the number of unshared pairs at each designated atom. Be sure your answers are consistent with the formal charges on the formulas. CH. H₂ fo H2 H The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c is HC HC HC CH The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c isarrow_forwardDraw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forward
- Nonearrow_forwardJON Determine the bund energy for UCI (in kJ/mol Hcl) using me balanced chemical equation and bund energies listed? का (My (9) +36/2(g)-(((3(g) + 3(g) A Hryn = -330. KJ bond energy и-н 432 bond bond C-1413 C=C 839 N-H 391 C=O 1010 S-H 363 б-н 467 02 498 N-N 160 N=N 243 418 C-C 341 C-0 358 C=C C-C 339 N-Br 243 Br-Br C-Br 274 193 614 (-1 214||(=olin (02) 799 C=N 615 AALarrow_forwardDetermine the bond energy for HCI ( in kJ/mol HCI) using he balanced cremiculequecticnand bund energles listed? also c double bond to N is 615, read numbets carefully please!!!! Determine the bund energy for UCI (in kJ/mol cl) using me balanced chemical equation and bund energies listed? 51 (My (9) +312(g)-73(g) + 3(g) =-330. KJ спод bond energy Hryn H-H bond band 432 C-1 413 C=C 839 NH 391 C=O 1010 S-1 343 6-H 02 498 N-N 160 467 N=N C-C 341 CL- 243 418 339 N-Br 243 C-O 358 Br-Br C=C C-Br 274 193 614 (-1 216 (=olin (02) 799 C=N 618arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning