College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 4CQ
A uniform ring of mass M and radius R and a point mass M a distance R from the axis of the ring both rotate about that axis, which is perpendicular to the ring at its center. Both objects have the same formula for their moment of inertia, I = MR2, about this axis. (a) Is there a good physical reason that they have the same formula? (b) If the ring were replaced by a solid uniform disk of mass M and radius R, would the disk and point mass then have the same moment-of-inertia formula? Why or why not?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
College Physics (10th Edition)
Ch. 9 - What is the difference between the tangential...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - A flywheel rotates with constant angular...Ch. 9 - A uniform ring of mass M and radius R and a point...Ch. 9 - According to experienced riders, you make a bike...Ch. 9 - A solid ball, a solid cylinder, and a hollow...Ch. 9 - Experienced cooks can tell whether an egg is raw...Ch. 9 - Part of the kinetic energy of a moving automobile...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - A client has come to you with two metal balls of...
Ch. 9 - If a ball roils down an irregularly shaped hill...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - When a wheel turns through one complete rotation,...Ch. 9 - Two points are on a disk that rotates about an...Ch. 9 - A bicycle wheel rotating at a rate of 12 rad/s...Ch. 9 - Two uniform solid spheres of the same size, but...Ch. 9 - A disk starts from rest and has a constant angular...Ch. 9 - Two unequal masses m and 2m are attached to a thin...Ch. 9 - A thin uniform bar has a moment of inertia I about...Ch. 9 - Two small objects of equal weight are attached to...Ch. 9 - A disk starts from rest and rotates with constant...Ch. 9 - Two identical merry-go-rounds are rotating at the...Ch. 9 - A solid sphere and a hollow sphere, both uniform...Ch. 9 - A uniform ball rolls without slipping toward a...Ch. 9 - A flexible straight wire 75.0 cm long is bent into...Ch. 9 - (a) What angle in radians is subtended by an arc...Ch. 9 - (a) Calculate the angular velocity (in rad/s) of...Ch. 9 - The once-popular LP (long-play) records were 12...Ch. 9 - If a wheel 212 cm in diameter takes 2.25 s for...Ch. 9 - A curve ball is a type of pitch in which the...Ch. 9 - A laser beam aimed from the earth is swept across...Ch. 9 - Communications satellites. Communications...Ch. 9 - An airplane propeller is rotating at 1900 rpm. (a)...Ch. 9 - At t = 0 a cooling fan running at 200 rad/s is...Ch. 9 - A turntable that spins at a constant 78.0 rpm...Ch. 9 - DVDs. The angular speed of digital video discs...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A wheel turns with a constant angular acceleration...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - A flywheel in a motor is spinning at 500.0 rpm...Ch. 9 - A flywheel having constant angular acceleration...Ch. 9 - A potters wheel is spinning with an initial...Ch. 9 - A car is traveling at a constant speed on the...Ch. 9 - (a) A cylinder 0.150 m in diameter rotates in a...Ch. 9 - A wheel rotates with a constant angular velocity...Ch. 9 - Ultracentrifuge. Find the required angular speed...Ch. 9 - Exercise! An exercise bike that you pedal in place...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - A car is traveling at a speed of 101 km/h on the...Ch. 9 - Dental hygiene. Electric toothbrushes can be...Ch. 9 - The spin cycles of a washing machine have two...Ch. 9 - A slender metal rod has a mass M and length L. The...Ch. 9 - A thin uniform bar has two small balls glued to...Ch. 9 - Use the formulas of Table 9.2 to find the moment...Ch. 9 - Four small 0.200 kg spheres, each of which you can...Ch. 9 - Suppose you are given a steel bar and you cut it...Ch. 9 - A bicycle chain connects two sprockets as shown in...Ch. 9 - A wagon wheel is constructed as shown in Figure...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - A grinding wheel in the shape of a solid disk is...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - Storing energy in flywheels. It has been suggested...Ch. 9 - A light string is wrapped around the outer rim of...Ch. 9 - A solid uniform 3.25 kg cylinder, 65.0 cm in...Ch. 9 - A solid copper disk has a radius of 0.2 m, a...Ch. 9 - Gymnastics. We can roughly model a gymnastic...Ch. 9 - A bicycle racer is going downhill at 11.0 m/s...Ch. 9 - A 2.20 kg hoop 1.20 m in diameter is rolling to...Ch. 9 - A solid uniform sphere and a uniform spherical...Ch. 9 - A size-5 soccer bail of diameter 22.6 cm and mass...Ch. 9 - A solid uniform marble and a block of ice, each...Ch. 9 - What fraction of the total kinetic energy is...Ch. 9 - A string is wrapped several times around the rim...Ch. 9 - A 150.0 kg cart rides down a set of tracks on four...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - A 7300 N elevator is to be given an acceleration...Ch. 9 - A 392 N wheel comes off a moving truck and rolls...Ch. 9 - Odometer. The odometer (mileage gauge) of a car...Ch. 9 - Speedometer. Your cars speedometer works in much...Ch. 9 - A passenger bus in Zurich, Switzerland, derived...Ch. 9 - Kinetic energy of bicycle wheels. A 55 kg woman is...Ch. 9 - Compact discs. When a compact disc (CD) is...Ch. 9 - A vacuum cleaner belt is looped over a shaft of...Ch. 9 - A basketball (which can be closely modeled as a...Ch. 9 - Human rotational energy. A dancer is spinning at...Ch. 9 - A solid uniform spherical boulder rolls down a...Ch. 9 - A thin uniform rod 50.0 cm long with mass 0.320 kg...Ch. 9 - In redesigning a piece of equipment, you need to...Ch. 9 - A solid uniform spherical stone starts moving from...Ch. 9 - A solid, uniform hall rolls without slipping up a...Ch. 9 - The kinetic energy of walking. If a person of mass...Ch. 9 - The kinetic energy of running. Using the previous...Ch. 9 - The Spinning Eel. American eels are freshwater...Ch. 9 - The eel is observed to spin at 14 rev/s clockwise,...Ch. 9 - The eel has a certain amount of rotational kinetic...Ch. 9 - A new species of eel is found to have the same...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
EST Intravenous (IV) feeding A patient in the hospital needs fluid from a glucose nutrient bag. The glucose nut...
College Physics
12. 5.4 kg = _________ g
Applied Physics (11th Edition)
The magnitude and direction of particle’s velocity.
Physics (5th Edition)
Does a body necessarily move in the direction of the net force acting on it?
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardA thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g (Fig. P10.52). A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a test to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening.arrow_forward
- A disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardDuring a certain time interval, the angular position of a swinging door is described by = 5.00 + 10.0t + 2.00t2, where is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door (a) at t = 0 and (b) at t = 3.00 s.arrow_forwardA space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forward
- A satellite is spinning at 6.0 rev/s. The satellite consists of a main body in the shape of a sphere of radius 2.0 m and mass 10,000 kg, and two antennas projecting out from the center of mass of the main body that can be approximated with rods of length 3.0 m each and mass 10 kg. The antenna’s lie in the plane of rotation. What is the angular momentum of the satellite?arrow_forwardJeff, running outside to play, pushes on a swinging door, causing its motion to be briefly described by = t2 + 0.800 t + 2.00,where t is in seconds and is in radians. At t = 0 and at t = 1.50s, what are the a. angular position, b. angular speed, and c. angularacceleration of the door?arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forward
- Why is the following situation impossible? A space station shaped like a giant wheel (Fig. P11.28, page 306) has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g. A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a lest to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening. Figure P11.28arrow_forwardWhat if another planet the same size as Earth were put into orbit around the Sun along with Earth. Would the moment of inertia of the system increase, decrease, or stay the same?arrow_forwardIn testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License