Concept explainers
What is the theoretical mechanical advantage for each of the three lever systems shown?
![Check Mark](/static/check-mark.png)
Theoretical mechanical advantage for each of the three lever systems.
Answer to Problem 48A
The theoretical mechanical advantage for each of the three lever systems 1, 2 and 0.5.
Explanation of Solution
Given:
The three lever systems are shown below.
Formula Used:
Mechanical Advantage = Effort arm / Load arm
Calculation:
Consider the length of benchas
For the first lever system, both load and the effort applied is at
Thus,
MA = Effort arm / Load arm
Similarly, for the second lever system, Load is at
Thus,
MA = Effort arm / Load arm
For the third lever system, Load is at
Thus,
MA = Effort arm / Load arm
Conclusion:
Hence, the theoretical mechanical advantage for the three lever systems is
Chapter 9 Solutions
Conceptual Physics C2009 Guided Reading & Study Workbook Se
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Human Physiology: An Integrated Approach (8th Edition)
Introductory Chemistry (6th Edition)
Microbiology: An Introduction
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- No chatgpt plsarrow_forwardA physics textbook is at rest on a table. If we call the gravitational force exerted on book action, what it the reaction force according to Newton’s third law? Explainarrow_forwardPart I. Addition of vectors a) using the graphical method, add 3.00 cm at 180° and 5.00 cm at 53.1°. Draw the vectors b) using the component method. 2 add 3.00 cm at 180° and 5.00cm at 53.10 again. Include all calculations below. c) what is the magnitude and direction of the resultant nd equilibrant forces of 1.00N force at 30.0° nd 1.00 N force at 150°?arrow_forward
- Part I. Addition of vectors a) using the graphical method, add 3.00 cm at 180° and 5.00 cm at 53.1°. Draw the vectors b) using the component method. 2 add 3.00 cm at 180° and 5.00cm at 53.10 again. Include all calculations below. c) what is the magnitude and direction of the resultant nd equilibrant forces of 1.00N force at 30.0° nd 1.00 N force at 150°?arrow_forwardNo chatgpt plsarrow_forwardNo chatgpt plsarrow_forward
- No chatgpt pls will upvotearrow_forward10. Inx 8.817 11.9.30 × 10-6 12.0.00500010 13.331,000,000 14.6.0005 15.pH=-log[H3O+} = 12.1830arrow_forwardRequired information In a standard tensile test, a steel rod of 1 3 -in. diameter is subjected to a tension force of P = 21 kips. It is given that v= 0.30 and E= 29 × 106 psi. 1-in. diameter P P -8 in. Determine the change in diameter of the rod. (Round the final answer to six decimal places.) The change in diameter of the rod is - in.arrow_forward
- 5.84 ... If the coefficient of static friction between a table and a uni- form, massive rope is μs, what fraction of the rope can hang over the edge of the table without the rope sliding? 5.97 Block A, with weight Figure P5.97 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. B 36.9°arrow_forward5.60 An adventurous archaeologist crosses between two rock cliffs by slowly going hand over hand along a rope stretched between the cliffs. He stops to rest at the middle of the rope (Fig. P5.60). The rope will break if the tension in it exceeds 2.50 X 104 N, and our hero's mass is 90.0 kg. (a) If the angle is 10.0°, what is the tension in the rope? (b) What is the smallest value can have if the rope is not to break? Figure P5.60arrow_forwardplease answer the question thanks!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)