
Concept explainers
A satellite orbits the Earth at a height of 200 km in a circle of radius 6570 km. Find the linear speed of the satellite and the time taken to complete one revolution. Assume the Earth’s mass is 6.0 × 1024 kg. [Hint: The gravitational force provides the

The speed of the satellite and the time taken by the satellite which is rotating in a circular orbit at an altitude of
Answer to Problem 47SP
Solution:
Explanation of Solution
Given data:
The altitude of satellite from Earth’s surface is
The radius of the Earth is
The mass of the Earth is
Formula used:
The expression for gravitational force on the satellite is written as,
Here,
The centrifugal force, which is equal in magnitude of centripetal force but opposite in the direction that is in outwards direction, on the satellite is expressed as,
Here,
Explanation:
Consider the expression for gravitational force on the satellite.
Understand that standard value of
Consider the expression for centrifugal force on satellite.
Substitute
Understand that for the continuous rotation of the satellite in the orbit, the gravitational forceon the satellite must be balanced by the centrifugal force on the satellite
Substitute
Further solve as,
The speed of the satellite is
Consider the distance covered by the satellite in one revolution
Here,
Substitute
Consider the formula for speed of the satellite
Substitute
The time taken by the satellite for one revolution is
Conclusion:
The speed of the satellite is
The time taken by the satellite for one revolution is
Want to see more full solutions like this?
Chapter 9 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- 12. What is the angle between two unit vectors if their dot product is 0.5?arrow_forwardIf the car in the previous problem increases its power output by 10% (by pressing the gas pedal farther down), at what rate will the car accelerate? Hint: Consider the net force. In the previous problem the power was 31.8kWarrow_forwardWhat power is required (at the wheels) for a 1400 kg automobile to climb a 4% grade at a constant speed 30 m/s while it is opposed by drag and rolling resistance forces totaling 500 N?arrow_forward
- No chatgpt pls will upvotearrow_forwardAs a box is lifted against gravity and placed on a shelf, how does the work done by the lifter compare with the work done by gravity? What is the net work done on the box? What does this imply about its change in kinetic energy? Use definitions and mathematics from this chapter to answer these questions.arrow_forwardAs I carry a box up a flight of stairs, am I doing positive work or negative work on the box? Provide a mathematical explanation.arrow_forward
- Air temperature of 37 °C increases swimming pool temperature of 2.55 °C. What is the fraction of the water in the pool must evaporate during this time to carry enough energy to keep the temperature of the pool constant? 4186 J/(kg°C) = specific heat of water 2,430,000 (2.43 x 106) J/kg = latent heat of vaporization for the water in the pool.arrow_forwardThe iceberg requires 7.4 x 1020 Joules of energy to melt it completely. It absorbs energy from the Sun at a constant average rate of 88 Watts/m2. The total surface area of iceberg exposed to the sunlight is 12 billion (1.2 x 1010) square meters. How long will it take for sunlight to melt the entire iceberg in yearsarrow_forward1.0 kg block of ice to melt in the kitchen. The temperature in the kitchen is 31 °C. The ice starts out at 0 °C and takes an hour to melt and reach the same temperature as the surrounding room (31 °C). How much heat does the 1.0 kg of ice/water absorb from the room as it melts and heats up to 31 °C in Joules absorbed? Latent heat of fusion for water/ice is 334,000 J/kg Specific heat of water is 4186 J/kg°Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





