
Concept explainers
(a)
The speed of the car when it reaches the bottom of the hill.
(a)

Answer to Problem 47PQ
The speed of the car when it reaches the bottom of the hill is
Explanation of Solution
It is given that the rolling friction is negligible. This implies the principle of conservation of energy can be applied on the system. The gravitational potential energy of the car is converted to its kinetic energy as it falls to the bottom of the hill.
Write the expression for the conservation of energy.
Here,
The initial kinetic energy of the car is zero.
Write the equation for
Assume that initially the car is at a height
Write the expression for
Here,
Assume the height of the car at the bottom of the hill is zero.
Write the expression for
Write the expression for
Here,
Put equations (II) to (V) in equation (I) and rewrite the equation for
Conclusion:
Given that the initial height of the car is
Substitute
Therefore, the speed of the car when it reaches the bottom of the hill is
(b)
The amount of thermal energy of the system that changes during the stopping motion of the car.
(b)

Answer to Problem 47PQ
The amount of thermal energy of the system that changes during the stopping motion of the car is
Explanation of Solution
Write the expression for the work-energy theorem.
Here,
Define the system as the plastic track and the roller coaster’s wheels. During the last stretch on the track, the coaster will be at the same height as that of its initial height. This implies there is no change in potential energy of the system.
There are no external forces doing work on the system.
Write the expression for
The roller coaster is stopped at the final configuration so that its final kinetic energy will be zero.
Write the expression for
Put the above three equations in equation (VII) .
Write the expression for
Here,
Conclusion:
In part (a), it is found that the value of
Substitute
Substitute
Therefore, the amount of thermal energy of the system that changes during the stopping motion of the car is
(c)
The coefficient of kinetic friction between the wheels and the plastic stopping track.
(c)

Answer to Problem 47PQ
The coefficient of kinetic friction between the wheels and the plastic stopping track is
Explanation of Solution
The change in thermal energy of the system occurs due to the work done by the
Write the expression for
Here,
Write the expression for
Here,
Write the expression for
Here,
Write the expression for
Put the above equation in equation (XII).
Put the above equation in equation (XI).
Put the above equation in equation (X) and rewrite it for
Conclusion:
It is given that the car stops at
Substitute
Therefore, the coefficient of kinetic friction between the wheels and the plastic stopping track is
Want to see more full solutions like this?
Chapter 9 Solutions
Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term
- A circular capacitor has 6mm radius. Two parallel plates are 2mm apart. Between the capacitors magnetic field is B=410^-2 Tesla in theta direction at a given time. Calculate the displacement current and change in electric field at thatmomentarrow_forwardA light source is incoming with 30 degrees with the normal force to an equilateral prism made out of a material withn=1.2 and it exits the prism. Draw the ray diagramarrow_forward1 Cartpole System Analysis The cartpole system (Fig. 1) consists of a cart of mass M moving along a frictionless track, and a pendulum of mass m and length 1 pivoting around the cart. The mass of the pendulum is assumed to be equally distributed along the rigid rod. The system is actuated by a horizontal force F applied to the cart. m Ө X F M Figure 1: Cart-pole as the combination of a cart and a pendulum. 1.1 Tasks 1. Draw the free-body diagram of the pendulum and cart, showing all forces acting on them. Note: Point the reaction force Fx as the coupling force between the pendulum and the cart in positive x-direction in the free-body diagram of the pendulum.arrow_forward
- A light beam with intensity I=40W/m^2 passes through two polarizers. First polarizer makes 30 degrees with the y-axis and the second one makes 40 degrees with the x-axis. Find the final intensity as it exits both polarizers fora) Original beam is umpolarized b) Original beam is polarized in x direction c) Original beam is polarized in y-directonarrow_forwardFind the critical angle between ruby and glass. Ruby has n=1.75 and glass has n=1.5Draw an approximate raydiagram for a beam coming 5 degrees less than the critical anglearrow_forwardCalculate the value of the force F at which the 20 kg uniformly dense cabinet will start to tip. Calculate the acceleration of the cabinet at this force F. Must include the FBD and KD of the system. Ignore friction.arrow_forward
- 1) A 2.0 kg toy car travelling along a smooth horizontal surface experiences a horizontal force Fas shown in the picture to the left. Assuming the rightward direction to be positive and if the car has an initial velocity of 60.0m/s to the right, calculate the velocity of the car after the first 10.0s of motion. (Force is in Newtons and time in seconds). (Hint: Use impulse-momentum theorem) F 5.0 10 0 -10arrow_forward3) Two bumper cars of masses 600 kg and 900 kg travelling (on a smooth surface) with velocities 8m/s and 4 m/s respectively, have a head on collision. If the coefficient of restitution is 0.5. a) What sort of collision is this? b) Calculate their velocities immediately after collision. c) If the coefficient of restitution was 1 instead of 0.5, what is the amount of energy lost during collision?arrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forward
- Give a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A. Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.arrow_forwardCalculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3arrow_forwardA 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





