Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 47E

(a)

To determine

The de Broglie wavelength of the earth.

(a)

Expert Solution
Check Mark

Answer to Problem 47E

The de Broglie wavelength of the earth is 3.68×1063m.

Explanation of Solution

Given Info: The mass of earth is 6×1024kg , orbital speed is 3×104m/s and value of h is 6.626×1034Js.

Write the formula to calculate the de Broglie wavelength of the earth.

λ=hmv

Here,

λ is the de Broglie wavelength of the earth

m is the mass of the earth

v is the orbital velocity

Substitute 6×1024kg for m, 6.626×1034Js for h and 3×104m/s for v in the above equation to calculate λ.

λ=6.626×1034Js(6×1024kg)(3×104m/s)=6.626×1034Js18×1028kgm/s=0.368×1062m=3.68×1063m

Conclusion:

Therefore, the de Broglie wavelength of the earth is 3.68×1063m.

(b)

To determine

The quantum number of the earth’s orbit.

(b)

Expert Solution
Check Mark

Answer to Problem 47E

The quantum number of the earth’s orbit is 2.55×1074.

Explanation of Solution

Given Info: The circumference of the earth is 9.4×1011m and de Broglie wavelength is 3.68×1063m.

Write the expression for the relation between the circumference and wavelength.

nλ=C

Here,

n is the quantum number of earth’s orbit

C is the circumference of the earth’s orbit

Substitute 9.4×1011m for C and 3.68×1063m for λ in the above equation to calculate n.

n(3.68×1063m)=9.4×1011mn=9.4×1011m3.68×1063m=2.55×1074

Conclusion:

Therefore, the quantum number of the earth’s orbit is 2.55×1074.

(c)

To determine

Does the quantum consideration has any major role on the earth’s orbital motion.

(c)

Expert Solution
Check Mark

Answer to Problem 47E

The mass of the earth is too big and hence the de Broglie wavelength is too small to detect therefore quantum mechanics has no role in the case of earth’s orbit motion.

Explanation of Solution

Write the formula to calculate the de Broglie wavelength of the earth.

λ=hmv

Since the de Broglie wavelength of any object is inversely proportional to the mass of the object. As mass increases the observed de Broglie wavelength is too small to detect. Here the mass of the earth is too big and hence too small the de Broglie wavelength.

In addition to that the value of plank’s constant h has the order of 1034 would again decrease the magnitude of the de Broglie wavelength. Thus, the quantum mechanics has no role on the earth’s orbital motion.

Conclusion:

Therefore, the mass of the earth is too big and hence the de Broglie wavelength is too small to detect therefore quantum mechanics has no role in the case of earth’s orbit motion.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
Three point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.
The drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.

Chapter 9 Solutions

Connect with LearnSmart for Krauskopf: The Physical Universe, 16e

Ch. 9 - Prob. 11MCCh. 9 - Prob. 12MCCh. 9 - Prob. 13MCCh. 9 - Prob. 14MCCh. 9 - Prob. 15MCCh. 9 - Prob. 16MCCh. 9 - Prob. 17MCCh. 9 - Prob. 18MCCh. 9 - Prob. 19MCCh. 9 - Prob. 20MCCh. 9 - Prob. 21MCCh. 9 - Prob. 22MCCh. 9 - Prob. 23MCCh. 9 - Prob. 24MCCh. 9 - Prob. 25MCCh. 9 - Prob. 26MCCh. 9 - Prob. 27MCCh. 9 - Prob. 28MCCh. 9 - Prob. 29MCCh. 9 - Prob. 30MCCh. 9 - Prob. 31MCCh. 9 - Prob. 32MCCh. 9 - Prob. 33MCCh. 9 - Prob. 34MCCh. 9 - Prob. 35MCCh. 9 - Prob. 36MCCh. 9 - Prob. 37MCCh. 9 - Prob. 38MCCh. 9 - Prob. 39MCCh. 9 - Prob. 40MCCh. 9 - Prob. 41MCCh. 9 - Prob. 42MCCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12ECh. 9 - Prob. 13ECh. 9 - Prob. 14ECh. 9 - Prob. 15ECh. 9 - Prob. 16ECh. 9 - Prob. 17ECh. 9 - Prob. 18ECh. 9 - Prob. 19ECh. 9 - Prob. 20ECh. 9 - Prob. 21ECh. 9 - Prob. 22ECh. 9 - Prob. 23ECh. 9 - Prob. 24ECh. 9 - Prob. 25ECh. 9 - Prob. 26ECh. 9 - Prob. 27ECh. 9 - Prob. 28ECh. 9 - Prob. 29ECh. 9 - Prob. 30ECh. 9 - Prob. 31ECh. 9 - Prob. 32ECh. 9 - Prob. 33ECh. 9 - Prob. 34ECh. 9 - Prob. 35ECh. 9 - Prob. 36ECh. 9 - Prob. 37ECh. 9 - Prob. 38ECh. 9 - Prob. 39ECh. 9 - Prob. 40ECh. 9 - Prob. 41ECh. 9 - Prob. 42ECh. 9 - Prob. 43ECh. 9 - Prob. 44ECh. 9 - Prob. 45ECh. 9 - Prob. 46ECh. 9 - Prob. 47ECh. 9 - Prob. 48ECh. 9 - Prob. 49ECh. 9 - Prob. 50ECh. 9 - Prob. 51ECh. 9 - Prob. 52ECh. 9 - Prob. 53ECh. 9 - Prob. 54ECh. 9 - Prob. 55ECh. 9 - Prob. 56ECh. 9 - Prob. 57ECh. 9 - Prob. 58ECh. 9 - Prob. 59ECh. 9 - Prob. 60ECh. 9 - Prob. 61ECh. 9 - Prob. 62ECh. 9 - Under what circumstances do electrons exhibit...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning