Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 1MC
To determine

The correct statement about the energy of emitted electrons when light incident on a metal surface.

Expert Solution & Answer
Check Mark

Answer to Problem 1MC

Option (b) vary with the frequency of light.

Explanation of Solution

Given Info:

When a photon of sufficient energy incident on a metal surface, its energy is transferred into the electrons on the metal surface. Using this energy, electrons leaves the metal surface and gain kinetic energy. This is called the photoelectric effect.

Conclusion:

Electrons gain kinetic energy from the energy of photon. Energy of photon strictly depends on its frequency. So energy of emitted electron is proportional to frequency of incident light.is Thus, option (b) is correct.

Intensity of light is a measure of number of photons incident on a unit area. Increase in intensity means the increase in number of incident photons only. Intensity cannot increase the kinetic energy of electron emitted from the metal surface. Thus, option (a) is incorrect.

Speed of light in a medium is a constant. Energy of emitted electron from metal surface has no any relation with speed of incident radiation. Thus, option (c) is incorrect.

The kinetic energy of emitted electrons can be calculated using Einstein’s photoelectric equation. Thus, option (d) is incorrect.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider a image that is located 30 cm in front of a lens. It forms an upright image 7.5 cm from the lens. Theillumination is so bright that that a faint inverted image, due to reflection off the front of the lens, is observedat 6.0 cm on the incident side of the lens. The lens is then turned around. Then it is observed that the faint,inverted image is now 10 cm on the incident side of the lens.What is the index of refraction of the lens?
2. In class, we discussed several different flow scenarios for which we can make enough assumptions to simplify the Navier-Stokes equations enough to solve them and obtain an exact solution. Consulting the cylindrical form of the Navier-Stokes equations copied below, please answer the following questions. др a 1 a + +0x- + +O₂ = Pgr + μl 18²v, 2 ave ²v₁] az2 + at or r de r Əz dr ar Vodvz др [18 + + +Or + +Vz = Pgz +fl at ar r 20 ôz ôz dr ave дов V,Ve ave +Or + + = pge at dr r 80 Əz + az2 a.) In class, we discussed how the Navier-Stokes equations are an embodiment of Newton's 2nd law, F = ma (where bolded terms are vectors). Name the 3 forces that we are considering in our analysis of fluid flow for this class. др a 10 1 ve 2 av 2200] + +μ or 42 30 b.) If we make the assumption that flow is "fully developed" in the z direction, which term(s) would go to zero? Write the term below, describe what the term means in simple language (i.e. do not simply state "it is the derivative of a with…
1. Consult the form of the x-direction Navier-Stokes equation below that we discussed in class. (For this problem, only the x direction equation is shown for simplicity). Note that the equation provided is for a Cartesian coordinate system. In the spaces below, indicate which of the following assumptions would allow you to eliminate a term from the equation. If one of the assumptions provided would not allow you to eliminate a particular term, write "none" in the space provided. du ди at ( + + + 매일) du ди = - Pgx dy др dx ²u Fu u + fl + ax2 ay² az2 - дх - Əz 1 2 3 4 5 6 7 8 9 Assumption Flow is in the horizontal direction (e.g. patient lying on hospital bed) Flow is unidirectional in the x-direction Steady flow We consider the flow to be between two flat, infinitely wide plates There is no pressure gradient Flow is axisymmetric Term(s) in equation

Chapter 9 Solutions

Connect with LearnSmart for Krauskopf: The Physical Universe, 16e

Ch. 9 - Prob. 11MCCh. 9 - Prob. 12MCCh. 9 - Prob. 13MCCh. 9 - Prob. 14MCCh. 9 - Prob. 15MCCh. 9 - Prob. 16MCCh. 9 - Prob. 17MCCh. 9 - Prob. 18MCCh. 9 - Prob. 19MCCh. 9 - Prob. 20MCCh. 9 - Prob. 21MCCh. 9 - Prob. 22MCCh. 9 - Prob. 23MCCh. 9 - Prob. 24MCCh. 9 - Prob. 25MCCh. 9 - Prob. 26MCCh. 9 - Prob. 27MCCh. 9 - Prob. 28MCCh. 9 - Prob. 29MCCh. 9 - Prob. 30MCCh. 9 - Prob. 31MCCh. 9 - Prob. 32MCCh. 9 - Prob. 33MCCh. 9 - Prob. 34MCCh. 9 - Prob. 35MCCh. 9 - Prob. 36MCCh. 9 - Prob. 37MCCh. 9 - Prob. 38MCCh. 9 - Prob. 39MCCh. 9 - Prob. 40MCCh. 9 - Prob. 41MCCh. 9 - Prob. 42MCCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12ECh. 9 - Prob. 13ECh. 9 - Prob. 14ECh. 9 - Prob. 15ECh. 9 - Prob. 16ECh. 9 - Prob. 17ECh. 9 - Prob. 18ECh. 9 - Prob. 19ECh. 9 - Prob. 20ECh. 9 - Prob. 21ECh. 9 - Prob. 22ECh. 9 - Prob. 23ECh. 9 - Prob. 24ECh. 9 - Prob. 25ECh. 9 - Prob. 26ECh. 9 - Prob. 27ECh. 9 - Prob. 28ECh. 9 - Prob. 29ECh. 9 - Prob. 30ECh. 9 - Prob. 31ECh. 9 - Prob. 32ECh. 9 - Prob. 33ECh. 9 - Prob. 34ECh. 9 - Prob. 35ECh. 9 - Prob. 36ECh. 9 - Prob. 37ECh. 9 - Prob. 38ECh. 9 - Prob. 39ECh. 9 - Prob. 40ECh. 9 - Prob. 41ECh. 9 - Prob. 42ECh. 9 - Prob. 43ECh. 9 - Prob. 44ECh. 9 - Prob. 45ECh. 9 - Prob. 46ECh. 9 - Prob. 47ECh. 9 - Prob. 48ECh. 9 - Prob. 49ECh. 9 - Prob. 50ECh. 9 - Prob. 51ECh. 9 - Prob. 52ECh. 9 - Prob. 53ECh. 9 - Prob. 54ECh. 9 - Prob. 55ECh. 9 - Prob. 56ECh. 9 - Prob. 57ECh. 9 - Prob. 58ECh. 9 - Prob. 59ECh. 9 - Prob. 60ECh. 9 - Prob. 61ECh. 9 - Prob. 62ECh. 9 - Under what circumstances do electrons exhibit...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning