21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 45QP
To determine
Depth you would have to go to experience pressure equal to the atmospheric surface pressure on Venus.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the escape velocity in km/s from Venus' exosphere, which begins about 168 km above the surface? Assume the gravitational constant is G = 6.67 × 10-11 m3 kg-1 s-2, and that Venus has a mass of 4.9e+24 kg and a radius of 5800.0 km.
Evidence exists that Mars may have had oceans 0.500 km deep in its early
history. We don't know what the atmospheric pressure on Mars was back then,
but some studies suggest it may have been as high as 50,000 Pa. What would
have been the highest pressure at the bottom of these oceans? Density of water
is 1000 kg/m³, gmars = 3.71 m/s².
Please give a clear and detailed solution.
Chapter 9 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 9.1 - Prob. 9.1CYUCh. 9.2 - Prob. 9.2CYUCh. 9.3 - Prob. 9.3ACYUCh. 9.3 - Prob. 9.3BCYUCh. 9.4 - Prob. 9.4CYUCh. 9.5 - Prob. 9.5CYUCh. 9 - Prob. 1QPCh. 9 - Prob. 2QPCh. 9 - Prob. 3QPCh. 9 - Prob. 4QP
Ch. 9 - Prob. 5QPCh. 9 - Prob. 6QPCh. 9 - Prob. 7QPCh. 9 - Prob. 8QPCh. 9 - Prob. 9QPCh. 9 - Prob. 10QPCh. 9 - Prob. 11QPCh. 9 - Prob. 12QPCh. 9 - Prob. 13QPCh. 9 - Prob. 14QPCh. 9 - Prob. 15QPCh. 9 - Prob. 16QPCh. 9 - Prob. 17QPCh. 9 - Prob. 18QPCh. 9 - Prob. 19QPCh. 9 - Prob. 20QPCh. 9 - Prob. 21QPCh. 9 - Prob. 22QPCh. 9 - Prob. 23QPCh. 9 - Prob. 24QPCh. 9 - Prob. 25QPCh. 9 - Prob. 26QPCh. 9 - Prob. 27QPCh. 9 - Prob. 28QPCh. 9 - Prob. 29QPCh. 9 - Prob. 30QPCh. 9 - Prob. 31QPCh. 9 - Prob. 32QPCh. 9 - Prob. 33QPCh. 9 - Prob. 34QPCh. 9 - Prob. 35QPCh. 9 - Prob. 36QPCh. 9 - Prob. 37QPCh. 9 - Prob. 38QPCh. 9 - Prob. 39QPCh. 9 - Prob. 40QPCh. 9 - Prob. 41QPCh. 9 - Prob. 42QPCh. 9 - Prob. 43QPCh. 9 - Prob. 44QPCh. 9 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A submersible robot is exploring one of the methane seas on Titan, Saturn's largest moon. It discovers a number of small spherical structures on the bottom of the sea at depth of 10 meters [m], and selects one for analysis. The sphere selected has a volume of 1.9 cubic centimeters [cm3] and a density of 2.25 grams per cubic centimeter [g/cm3]. When the rock is returned to Earth for analysis, what is the weight of the sphere in newtons [N]? Gravity on Titan is 1.352 meters per second squared [m/s2]. The density of methane is 0.712 grams per liter [g/L] The weight of the sphere is ____ N.arrow_forwardFor the planet Saturn,What is its average density (kg/m3)arrow_forwardFor the planet Saturn, What is its average density (kg/m3)arrow_forward
- Imagine a particular exoplanet covered in an ocean of liquid ethane. At the surface of the ocean, the acceleration of gravity is 7.80 m/s?, and atmospheric pressure is 8.20 x 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid ethane ocean to be 620 kg/m. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean? N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of ethane with radius 2.00 m? (Enter your answer in N.) (c) What is the pressure (in Pa) at a depth of 10.0 m in the ethane ocean? Paarrow_forwardThe atmospheric pressure on the surface of Venus is 90. atm. Calculate the atmospheric pressure in kPa.Round answer to 2 significant digits.arrow_forwardWhich of the following condition will be true for a planet to have atmosphere? [A] velocity of molecules in its atmosphere is lesser than escape velocity [B] velocity of molecules in its atmosphere is greater than escape velocity [C] velocity of molecules in its atmosphere is twice the escape velocity [D] velocity of molecules in its atmosphere is equal to the escape velocityarrow_forward
- Compare these atmospheric pressure with Mars and estimate how high you'd need to go in Earth's atmosphere to be at the same pressure as the surface of Mars? The given information is in the attachment.arrow_forwardImagine a particular exoplanet covered in an ocean of liquid ethane. At the surface of the ocean, the acceleration of gravity is 6.50 m/s2, and atmospheric pressure is 7.20 ✕ 104 Pa. The atmospheric temperature and pressure on this planet causes the density of the liquid ethane ocean to be 620 kg/m3. (a) What force (in N) is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of the ocean? ____N (b) What is the weight, on this exoplanet, of a 10.0 m deep cylindrical column of ethane with radius 2.00 m? (Enter your answer in N.) ____N (c) What is the pressure (in Pa) at a depth of 10.0 m in the ethane ocean? ____Paarrow_forwardRick is an Aerospace Engineer at NASA’s Jet Propulsions Laboratory (JPL), and is designing the next mission to Pluto called “New Horizons 2: The Sequel". This time Rick plans to study Pluto's largest moon Charon. Charon has a mass of 1.586 ×1021 kg and a mean radius of 606 km, and might have a nitrogenous atmosphere (N2) just like Pluto. If, for a massive object to have an atmosphere its escape speed must be 12 times greater than the root-mean- square (rms) velocity of the gas (otherwise the gas will slowly leak away over time), what is the maximum temperature that Charon can have and still have a nitrogenous atmosphere? [Charon has a temperature of -281 °C = 55 K, day or night.]arrow_forward
- You are a rover pilot on the crew of the initial exploration team sent to Kepler 22b,the first extrasolar planet discovered within the habitable zone of a sun-like star. Thescience team recently discovered liquid water on the surface. (Hurrah!) Your rover isat point A on the shore of a circular lake with radius 4 km collecting samples. Thescience team wants to send your rover to a point C diametrically opposite A. Therover can drive around the circumference of the lake at a rate of 4 km per hour andfly over the lake at a rate of 3 km per hour.(a) How long will it take the rover to fly across the lake?(b) How long will it take the rover to drive around the shore of the lake?You could also fly at an angle θ along a chord inside the circular lake, andcomplete the rest of the path driving along the circumference of the lake.(c) Find the length of the chord in terms of θ. How long will it take the drone totraverse the chord?(d) Find the length of the remaining shoreline after the cord in…arrow_forwardTitan has a radius of 2400.0 km and a mean density of 2.2 g/cm3. Earth's Moon has a radius of 1737.0 km and a mean density of 3.4 g/cm3. What is the ratio of gravitational acceleration on Titan compared to that on the Moon? The gravitational constant is G = 6.67 × 10-11 m3 kg-1 s-2arrow_forwardWhat is the escape velocity is km/s from Jupiters exosphere, which begins about 993 km above the surface ? Assume the Gravitational constant is G= 6.67 x10-11m3 kg-1s-2, and that's Jupiter has a mass of 1.8999999999999998e+27kg and a radius of 68.0 x103kmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY