Interpretation:
The energy produced (in kilocalories) in 1 second and the consumption of coal and natural gas (in kilogram) are to be calculated.
Concept introduction:
The power derived from the utilization of chemical or physical resources to provide heat and light or to carry out various processes is known as energy. The SI unit of energy is joule.
Unit conversion is a multiple-step process that is used to convert the unit of measurement of a given quantity. It is determined by multiplicaiton with a conversion factor.
The useful energy derived can be calculated by using the equation:
Conversion factor megajoules to joule is
Conversion factor calorie to kilocalorie is
Answer to Problem 44E
Solution:
Explanation of Solution
a) The number of kilocalories produce in 1 s.
The energy produced in one second by the power plant is given as:
The kilocalorie produced in one second is calculated as follows:
First, convert megajoule into joule, then joule into calorie, and then calorie into kilocalorie.
Conversion of megajoule into kilocalorie is as follows:
Therefore, the kilocalorie produced in one second is
b) The amount of energy it consumes in 1 s if its efficiency is 34%.
The total energy consumed in one second is calculated as follows:
The equation used to calculate the total energy consumed is represented as follows:
The total energy produced in one second is
The efficiency of a person is
Conversion of percentage into decimal:
Substitute the values in the given equation:
Or
The energy consumed in MJ is calculated as follows:
Therefore, the energy consumed (in MJ) is
c) The consumption of coal in 1 s if the power plant were coal fired.
The consumption of coal (in kilogram) is calculated as follows:
First, the energy consumed is divided by the heat of combustion of coal. Then, it is converted into kilograms.
Conversion of kilocalorie into kilogram is as follows:
The energy consumed is
The heat of combustion of coal is
Therefore,
Therefore, the consumption of coal (in kilogram) is
d) The consumption of natural gas in 1 s if the power plant were natural gas fired.
The consumption of natural gas (in kilogram) is calculated as follows:
First, the energy consumed is divided by the heat of combustion of natural gas. Then, it is converted into kilograms.
Conversion of kilocalorie into kilogram is as follows:
The energy consumed is
The heat of combustion of natural gas is
Therefore,
Therefore, the consumption of natural gas (in kilogram) is
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry In Focus
- 3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forwardIndicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.arrow_forward
- The gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?arrow_forwardChances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Clarrow_forwardWhat is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forward
- Last Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forwardI find the solution way too brief and unsatisfactory as it does not clearly explain the solution provided in the problem.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning