
(a)
The radius of the orbit.
(a)

Answer to Problem 43P
The radius of the orbit is
Explanation of Solution
The gravitational force acting on the satellite is equal
Write the expression for the force acting on the satellite.
Here,
Equate the gravitational force, and centripetal force.
Here,
Substitute,
Here,
Conclusion
Substitute,
Therefore, the radius of the orbit is
(b)
The speed of the satellite.
(b)

Answer to Problem 43P
The speed of the satellite is
Explanation of Solution
Write the expression for speed in terms of period.
Conclusion:
Substitute,
Therefore, the speed of the satellite is
(c)
The fractional change in the frequency due to time dilation.
(c)

Answer to Problem 43P
The fractional change in the frequency due to time dilation is
Explanation of Solution
Write the expression for the frequency.
Here,
Take the derivative of equation (V) on both sides.
Substitute,
The fractional change in the frequency is equal to the fractional change in time period according to equation (VII).
Substitute,
Substitute,
Here,
Conclusion:
Substitute,
Therefore, the fractional change in the frequency due to time dilation is
(d)
The fractional change in frequency due to the change in position of the satellite.
(d)

Answer to Problem 43P
The fractional change in frequency due to the change in position of the satellite is
Explanation of Solution
Write the expression for the gravitational potential.
The fractional change in frequency due to the change in position of the satellite is.
Conclusion:
Substitute,
Substitute,
Therefore, the fractional change in frequency due to the change in position of the satellite is
(e)
The overall fractional change in the frequency.
(e)

Answer to Problem 43P
The overall fractional change in the frequency is
Explanation of Solution
The fractional change in frequency due to the change in position of the satellite is
Hence the overall change in the frequency is.
Conclusion:
Therefore, the overall fractional change in the frequency is
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- What is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





