The vapor pressure of I2(s) at 30°C is 0.466 mm Hg.
(a) How many milligrams of iodine will sublime into an evacuated 750.0-mL flask?
(b) If 3.00 mg of I2 are used, what will the final pressure in the flask be?
(c) If 7.85 mg of I2 are used, what will the final pressure in the flask be?
(a)
Interpretation:
The mass of iodine (in mg) sublimed under the given conditions is to be calculated.
Concept Introduction :
The ideal gas equation is the expression that relates different measurable properties of a gas. The expression is given as
where,
P = Pressure of the gas
V = Volume of the container in which the gas is occupied
R = Ideal gas constant = 0.0821 L atm/ mol K
n = number of moles of the gas = Mass of gas / Molecular mass of gas
T = Absolute temperature of the gas i.e., temperature on Kelvin scale
Answer to Problem 3QAP
The mass of iodine sublimed under the given conditions = 2.41 mg.
Explanation of Solution
Given:
P = 0.466 mm Hg = (0.466/760) atm
V = 750 mL = 750×10-3 L
T = 30 0C = (30+273) K = 303 K
When iodine sublimes, it forms vapors which are in equilibrium with the solid form. The pressure of the vapors in this state is vapor pressure. Thus, for gaseous camphor formed.
The number of moles of iodine present as vapors can be calculated by using the ideal gas equation as
The mass of iodine sublimed can thus be calculated as
Therefore, 4.69 mg of iodine has sublimed under the given conditions.
(b)
Interpretation:
The pressure in the flask if 3 mg of iodine is taken needs be calculated.
Concept Introduction :
The ideal gas equation is the expression that relates different measurable properties of a
gas. The expression is given as:
where,
P = Pressure of the gas
V = Volume of the container in which the gas is occupied
R = Ideal gas constant = 0.0821 L atm/ mol K
n = number of moles of the gas (
T = Absolute temperature of the gas i.e., temperature on Kelvin scale
Answer to Problem 3QAP
The pressure in the flask is 0.29 mm Hg.
Explanation of Solution
Given:
V = 750 mL = 750×10-3 L
Mass = m = 3 mg = 3×10-3 g
T = 30 0C = (30+273) = 303 K
The pressure in the flask can be calculated using the ideal gas equation.
Thus, the pressure in the flask is 0.29 mm Hg.
(c)
Interpretation:
The pressure in the flask if 7.85 mg of iodine is taken needs to be calculated.
Concept Introduction :
The ideal gas equation is the expression that relates different measurable properties of a
gas. The expression is given as
where,
P = Pressure of the gas
V = Volume of the container in which the gas is occupied
R = Ideal gas constant = 0.0821 L atm/ mol K
n = number of moles of the gas (
T = Absolute temperature of the gas i.e., temperature on Kelvin scale
Answer to Problem 3QAP
The pressure in the flask is 0.77 mm Hg.
Explanation of Solution
Given:
V = 750 mL = 750×10-3 L
Mass = m = 7.85 mg = 7.85×10-3 g
T = 30 0C = (30+273) = 303 K
The pressure in the flask can be calculated using the ideal gas equation.
Thus, the pressure in the flask is 0.77 mm Hg.
Want to see more full solutions like this?
Chapter 9 Solutions
CHEMISTRY:PRIN.+REACTIONS-OWLV2 ACCESS
- Indicate the type of bond that is considered to be a hydrogen bond.(A). Permanent dipole-dipole interaction between polar molecules.(B). Mixed ionic-covalent bond.(C). Principal interatomic bond(D). Van del Waals forces.arrow_forwardRetro aldol: NaOH H₂O H NaOH & d H₂O Harrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. H conc. HBr Drawing Qarrow_forward
- Calculate the atomic packing factor of diamond knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are, respectively, 0.038 and 0.117 nm.arrow_forwardA pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows. Aldol: NaOH HO H Δ NaOH Δarrow_forwardNonearrow_forward
- Draw structures corresponding to the following names and give IUPAC names for the following compounds: (8 Point) a) b) c) CH3 CH2CH3 CH3CHCH2CH2CH CH3 C=C H3C H H2C=C=CHCH3 d) CI e) (3E,5Z)-2,6-Dimethyl-1,3,5,7-octatetraene f) (Z)-4-bromo-3-methyl-3-penten-1-yne g) cis-1-Bromo-2-ethylcyclopentane h) (5R)-4,4,5-trichloro-3,3-dimethyldecanearrow_forwardNonearrow_forwardReview: Design a total total synthesis synthesis of the following compound using methyloxacyclopropane and any other necessary reagents.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning