Concept explainers
a)
To determine: The probability that the randomly selected person earns less than $60,000 per year.
Introduction: Simulation model is the digital prototype of the physical model that helps to
b)
To determine: The probability that the randomly selected person earns less than $60,000 per year is a man.
Introduction: Simulation model is the digital prototype of the physical model that helps to forecast the performance of the system or model in the real world.
c)
To determine: The probability that the randomly selected person earns at least $60,000 per year is a woman.
Introduction: Simulation model is the digital prototype of the physical model that helps to forecast the performance of the system or model in the real world.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Practical Management Science
- You now have 5000. You will toss a fair coin four times. Before each toss you can bet any amount of your money (including none) on the outcome of the toss. If heads comes up, you win the amount you bet. If tails comes up, you lose the amount you bet. Your goal is to reach 15,000. It turns out that you can maximize your chance of reaching 15,000 by betting either the money you have on hand or 15,000 minus the money you have on hand, whichever is smaller. Use simulation to estimate the probability that you will reach your goal with this betting strategy.arrow_forwardIn this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardYou now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forward
- The game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forwardYou have 5 and your opponent has 10. You flip a fair coin and if heads comes up, your opponent pays you 1. If tails comes up, you pay your opponent 1. The game is finished when one player has all the money or after 100 tosses, whichever comes first. Use simulation to estimate the probability that you end up with all the money and the probability that neither of you goes broke in 100 tosses.arrow_forwardAt the beginning of each week, a machine is in one of four conditions: 1 = excellent; 2 = good; 3 = average; 4 = bad. The weekly revenue earned by a machine in state 1, 2, 3, or 4 is 100, 90, 50, or 10, respectively. After observing the condition of the machine at the beginning of the week, the company has the option, for a cost of 200, of instantaneously replacing the machine with an excellent machine. The quality of the machine deteriorates over time, as shown in the file P10 41.xlsx. Four maintenance policies are under consideration: Policy 1: Never replace a machine. Policy 2: Immediately replace a bad machine. Policy 3: Immediately replace a bad or average machine. Policy 4: Immediately replace a bad, average, or good machine. Simulate each of these policies for 50 weeks (using at least 250 iterations each) to determine the policy that maximizes expected weekly profit. Assume that the machine at the beginning of week 1 is excellent.arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,