Concept explainers
(a)
What is the yield strength if the following data are associated with an alloy of steel, plot a graph of stress versus strain for the alloy?
Strain (%) | Stress ( | Strain (%) | Stress ( |
0 | 0 | 1 | 300 |
0.1 | 125 | 1.5 | 325 |
0.2 | 250 | 2 | 350 |
0.3 | 230 | 2.5 | 375 |
0.4 | 230 | 3 | 400 |
0.5 | 235 | 3.5 | 375 |
0.6 | 240 | 4 | 350 |
0.7 | 250 | 4.5 | 325 |
0.8 | 260 | 5 | 300 |
0.9 | 270 |
Answer to Problem 37QAP
The yield strength is the tensile stress at which the material becomes permanently deformed
Explanation of Solution
Calculation:
The graph is drawn and is given by
The yield strength is the tensile stress at which the material becomes permanently deformed
Conclusion:
The yield strength is the tensile stress at which the material becomes permanently deformed
(b)
The ultimate strength if the following data are associated with an alloy of steel, plot a graph of stress versus strain for the alloy?
Strain (%) | Stress ( | Strain (%) | Stress ( |
0 | 0 | 1 | 300 |
0.1 | 125 | 1.5 | 325 |
0.2 | 250 | 2 | 350 |
0.3 | 230 | 2.5 | 375 |
0.4 | 230 | 3 | 400 |
0.5 | 235 | 3.5 | 375 |
0.6 | 240 | 4 | 350 |
0.7 | 250 | 4.5 | 325 |
0.8 | 260 | 5 | 300 |
0.9 | 270 |
Answer to Problem 37QAP
The ultimate strength is the maximum tensile stress the material can withstand
Explanation of Solution
Calculation:
The graph is drawn and is given by
The ultimate strength is the maximum tensile stress the material can withstand
Conclusion:
The ultimate strength is the maximum tensile stress the material can withstand
(c)
Young's modulus for the material if the following data are associated with an alloy of steel, plot a graph of stress versus strain for the alloy?
Strain (%) | Stress ( | Strain (%) | Stress ( |
0 | 0 | 1 | 300 |
0.1 | 125 | 1.5 | 325 |
0.2 | 250 | 2 | 350 |
0.3 | 230 | 2.5 | 375 |
0.4 | 230 | 3 | 400 |
0.5 | 235 | 3.5 | 375 |
0.6 | 240 | 4 | 350 |
0.7 | 250 | 4.5 | 325 |
0.8 | 260 | 5 | 300 |
0.9 | 270 |
Answer to Problem 37QAP
The Young's modulus is the slope of the initial linear region
Explanation of Solution
Given info:
Formula used:
Calculation:
The graph is drawn and is given by
The Young's modulus is the slope of the initial linear region
Conclusion:
The Young's modulus is the slope of the initial linear region
Want to see more full solutions like this?
Chapter 9 Solutions
COLLEGE PHYSICS,VOLUME 1
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning