
Review. A 60.0-kg person running at an initial speed of 4.00 m/s jumps onto a 120-kg cart initially at rest (Fig. P9.37). The person slides on the cart’s top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is 0.400. Friction between the cart and ground can be ignored. (a) Find the final velocity of the person and cart relative to the ground. (b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (c) How long does the friction force act on the person? (d) Find the change in momentum of the person and the change in momentum of the cart. (c) Determine the displacement of the person relative to the ground while he is sliding on the cart. (f) Determine the displacement of the cart relative to the ground while the person is sliding. (g) Find the change in kinetic energy of the person. (h) Find the change in kinetic energy of the cart. (i) Explain why the answers to (g) and (h) differ. (What kind of collision is this one, and what accounts for the loss of mechanical energy)
Figure P9.37
(a)

The final velocity of the person and cart relative to the ground.
Answer to Problem 37AP
The final velocity of the person and cart relative to the ground is
Explanation of Solution
The mass of the person is
Write the expression of conservation of momentum.
Here,
Substitute
Conclusion:
Therefore, the final velocity of the person and cart relative to the ground is
(b)

The frictional force acting on the person while he is sliding.
Answer to Problem 37AP
The frictional force acting on the person while he is sliding is
Explanation of Solution
Write the expression to calculate the frictional force.
Here,
Substitute
The negative sign indicates that the frictional force is acting toward negative x axis.
Conclusion:
Therefore, the frictional force acting on the person while he is sliding is
(c)

The time duration in which the frictional force is acting on the person.
Answer to Problem 37AP
The time duration in which the frictional force is acting on the person is
Explanation of Solution
Write the expression of Impulse-momentum equation.
Here,
Substitute
Conclusion:
Therefore, the time duration in which the frictional force is acting on the person is
(d)

The change in momentum of the person and cart.
Answer to Problem 37AP
The change in momentum of the person and cart is
Explanation of Solution
Write the expression to calculate the change in momentum of the person.
Substitute
Write the expression to calculate the change in momentum of the cart.
Substitute
Conclusion:
Therefore, the change in momentum of the person and cart is
(e)

The displacement of the person relative to the ground during sliding on the cart.
Answer to Problem 37AP
The displacement of the person relative to the ground during sliding on the cart is
Explanation of Solution
Write the expression to calculate the displacement of the person.
Substitute
Conclusion:
Therefore, the displacement of the person relative to the ground during sliding on the cart is
(f)

The displacement of the cart relative to the ground during the person sliding on the cart.
Answer to Problem 37AP
The displacement of the cart relative to the ground during the person sliding on the cart is
Explanation of Solution
Write the expression to calculate the displacement of the cart.
Substitute
Conclusion:
Therefore, the displacement of the cart relative to the ground during the person sliding on the cart is
(g)

The change in kinetic energy of the person.
Answer to Problem 37AP
The change in kinetic energy of the person is
Explanation of Solution
Write the expression to calculate the change in kinetic energy of the person.
Substitute
`
Conclusion:
Therefore, the change in kinetic energy of the person is
(h)

The change in kinetic energy of the cart.
Answer to Problem 37AP
The change in kinetic energy of the cart is
Explanation of Solution
Write the expression to calculate the change in kinetic energy of the cart.
Substitute
`
Conclusion:
Therefore, the change in kinetic energy of the cart is
(i)

The reason due to which the answer in part (g) and (h) are different.
Answer to Problem 37AP
The collision between the person and the cart is perfectly inelastic collision and the loss of energy is due to frictional force.
Explanation of Solution
The force acting on the person must be equal in magnitude and opposite in direction to the force exerted by the cart on the person.
According to the conservation of linear momentum, the change in momentum of the person and the cart must be equal in magnitude and must add to zero. The change in kinetic energy of the person and cart must be equal for elastic collision but in this case change in kinetic energy of the person and cart is not equal, which shows that this is inelastic collision.
The reason of change in kinetic energy of both object of not being same is, the displacement of person and the cart is not same due to frictional force acting on the person.
Due to the frictional force the loss of energy in form of heat is the internal energy.
Write the expression to calculate the internal energy.
Substitute
Thus, the collision between the person and the cart is perfectly inelastic collision due to the loss of energy.
Conclusion:
Therefore, the collision between the person and the cart is perfectly inelastic collision and the loss of energy is due to frictional force.
Want to see more full solutions like this?
Chapter 9 Solutions
Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- 3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forward
- A certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forwardDescribe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forward
- A 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





