& A string wraps around a 6.0-kg wheel of radius 0.20 m. The wheel is mounted on a frictionless horizontal axle at the top of an inclined plane tilted 37**#x00B0; below the horizontal The free end of the string is attached to a 2.0-kg block that slides down the incline without friction. The block's acceleration while sliding down the incline is 2 .0 m/s 2 . (a) Draw separate force diagrams for the wheel and for the block. (b) Apply Newton's second law (either the translational form or the rotational form) for the wheel and for the block. (c) Determine the rotational inertia for the wheel about its axis of rotation.
& A string wraps around a 6.0-kg wheel of radius 0.20 m. The wheel is mounted on a frictionless horizontal axle at the top of an inclined plane tilted 37**#x00B0; below the horizontal The free end of the string is attached to a 2.0-kg block that slides down the incline without friction. The block's acceleration while sliding down the incline is 2 .0 m/s 2 . (a) Draw separate force diagrams for the wheel and for the block. (b) Apply Newton's second law (either the translational form or the rotational form) for the wheel and for the block. (c) Determine the rotational inertia for the wheel about its axis of rotation.
& A string wraps around a 6.0-kg wheel of radius 0.20 m. The wheel is mounted on a frictionless horizontal axle at the top of an inclined plane tilted 37**#x00B0; below the horizontal The free end of the string is attached to a 2.0-kg block that slides down the incline without friction. The block's acceleration while sliding down the incline is
2
.0 m/s
2
.
(a) Draw separate force diagrams for the wheel and for the block. (b) Apply Newton's second law (either the translational form or the rotational form) for the wheel and for the block. (c) Determine the rotational inertia for the wheel about its axis of rotation.
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.