College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 31P
Four small 0.200 kg spheres, each of which you can regard as a point mass, are arranged in a square 0.400 m on a side and connected by light rods. (See Figure 9.28.) Find the moment of inertia of the system about an axis (a) through the center of the square, perpendicular to its plane at point O; (b) along the line AB; and (c) along the line CD.
Figure 9.28
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
no copy please
Please help with part (b)
Q.12 Consider a uniform thin circular disk of radius R and mass M. A concentric square of side R/2 is cut
out from the disk (see figure). What is the moment of inertia of the resultant disk about an axis
passing through the centre of the disk and perpendicular to it?
R
R/2
MR?
(A) I =
4
48 n.
MR2
(B) 1 = "
1 -
48 n
M R?
(C) I =
24 n
MR?
(D) I =
24
Chapter 9 Solutions
College Physics (10th Edition)
Ch. 9 - What is the difference between the tangential...Ch. 9 - A flywheel rotates with constant angular velocity....Ch. 9 - A flywheel rotates with constant angular...Ch. 9 - A uniform ring of mass M and radius R and a point...Ch. 9 - According to experienced riders, you make a bike...Ch. 9 - A solid ball, a solid cylinder, and a hollow...Ch. 9 - Experienced cooks can tell whether an egg is raw...Ch. 9 - Part of the kinetic energy of a moving automobile...Ch. 9 - Can you think of a body that has the same moment...Ch. 9 - A client has come to you with two metal balls of...
Ch. 9 - If a ball roils down an irregularly shaped hill...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - When a wheel turns through one complete rotation,...Ch. 9 - Two points are on a disk that rotates about an...Ch. 9 - A bicycle wheel rotating at a rate of 12 rad/s...Ch. 9 - Two uniform solid spheres of the same size, but...Ch. 9 - A disk starts from rest and has a constant angular...Ch. 9 - Two unequal masses m and 2m are attached to a thin...Ch. 9 - A thin uniform bar has a moment of inertia I about...Ch. 9 - Two small objects of equal weight are attached to...Ch. 9 - A disk starts from rest and rotates with constant...Ch. 9 - Two identical merry-go-rounds are rotating at the...Ch. 9 - A solid sphere and a hollow sphere, both uniform...Ch. 9 - A uniform ball rolls without slipping toward a...Ch. 9 - A flexible straight wire 75.0 cm long is bent into...Ch. 9 - (a) What angle in radians is subtended by an arc...Ch. 9 - (a) Calculate the angular velocity (in rad/s) of...Ch. 9 - The once-popular LP (long-play) records were 12...Ch. 9 - If a wheel 212 cm in diameter takes 2.25 s for...Ch. 9 - A curve ball is a type of pitch in which the...Ch. 9 - A laser beam aimed from the earth is swept across...Ch. 9 - Communications satellites. Communications...Ch. 9 - An airplane propeller is rotating at 1900 rpm. (a)...Ch. 9 - At t = 0 a cooling fan running at 200 rad/s is...Ch. 9 - A turntable that spins at a constant 78.0 rpm...Ch. 9 - DVDs. The angular speed of digital video discs...Ch. 9 - A circular saw blade 0.200 m in diameter starts...Ch. 9 - A wheel turns with a constant angular acceleration...Ch. 9 - An electric fan is turned off, and its angular...Ch. 9 - A flywheel in a motor is spinning at 500.0 rpm...Ch. 9 - A flywheel having constant angular acceleration...Ch. 9 - A potters wheel is spinning with an initial...Ch. 9 - A car is traveling at a constant speed on the...Ch. 9 - (a) A cylinder 0.150 m in diameter rotates in a...Ch. 9 - A wheel rotates with a constant angular velocity...Ch. 9 - Ultracentrifuge. Find the required angular speed...Ch. 9 - Exercise! An exercise bike that you pedal in place...Ch. 9 - A flywheel with a radius of 0.300 m starts from...Ch. 9 - A car is traveling at a speed of 101 km/h on the...Ch. 9 - Dental hygiene. Electric toothbrushes can be...Ch. 9 - The spin cycles of a washing machine have two...Ch. 9 - A slender metal rod has a mass M and length L. The...Ch. 9 - A thin uniform bar has two small balls glued to...Ch. 9 - Use the formulas of Table 9.2 to find the moment...Ch. 9 - Four small 0.200 kg spheres, each of which you can...Ch. 9 - Suppose you are given a steel bar and you cut it...Ch. 9 - A bicycle chain connects two sprockets as shown in...Ch. 9 - A wagon wheel is constructed as shown in Figure...Ch. 9 - You need to design an industrial turntable that is...Ch. 9 - A grinding wheel in the shape of a solid disk is...Ch. 9 - The flywheel of a gasoline engine is required to...Ch. 9 - An airplane propeller is 2.08 m in length (from...Ch. 9 - Storing energy in flywheels. It has been suggested...Ch. 9 - A light string is wrapped around the outer rim of...Ch. 9 - A solid uniform 3.25 kg cylinder, 65.0 cm in...Ch. 9 - A solid copper disk has a radius of 0.2 m, a...Ch. 9 - Gymnastics. We can roughly model a gymnastic...Ch. 9 - A bicycle racer is going downhill at 11.0 m/s...Ch. 9 - A 2.20 kg hoop 1.20 m in diameter is rolling to...Ch. 9 - A solid uniform sphere and a uniform spherical...Ch. 9 - A size-5 soccer bail of diameter 22.6 cm and mass...Ch. 9 - A solid uniform marble and a block of ice, each...Ch. 9 - What fraction of the total kinetic energy is...Ch. 9 - A string is wrapped several times around the rim...Ch. 9 - A 150.0 kg cart rides down a set of tracks on four...Ch. 9 - A uniform marble rolls down a symmetric bowl,...Ch. 9 - A 7300 N elevator is to be given an acceleration...Ch. 9 - A 392 N wheel comes off a moving truck and rolls...Ch. 9 - Odometer. The odometer (mileage gauge) of a car...Ch. 9 - Speedometer. Your cars speedometer works in much...Ch. 9 - A passenger bus in Zurich, Switzerland, derived...Ch. 9 - Kinetic energy of bicycle wheels. A 55 kg woman is...Ch. 9 - Compact discs. When a compact disc (CD) is...Ch. 9 - A vacuum cleaner belt is looped over a shaft of...Ch. 9 - A basketball (which can be closely modeled as a...Ch. 9 - Human rotational energy. A dancer is spinning at...Ch. 9 - A solid uniform spherical boulder rolls down a...Ch. 9 - A thin uniform rod 50.0 cm long with mass 0.320 kg...Ch. 9 - In redesigning a piece of equipment, you need to...Ch. 9 - A solid uniform spherical stone starts moving from...Ch. 9 - A solid, uniform hall rolls without slipping up a...Ch. 9 - The kinetic energy of walking. If a person of mass...Ch. 9 - The kinetic energy of running. Using the previous...Ch. 9 - The Spinning Eel. American eels are freshwater...Ch. 9 - The eel is observed to spin at 14 rev/s clockwise,...Ch. 9 - The eel has a certain amount of rotational kinetic...Ch. 9 - A new species of eel is found to have the same...
Additional Science Textbook Solutions
Find more solutions based on key concepts
* EST A carpenter hammers a nail using a 0.80-kg hammerhead. He lifts the hammer and lets it fall down without ...
College Physics
94. One method for making a compass is to stick a magnetized needle into a piece of cork and float it in a glas...
Conceptual Physical Science (6th Edition)
The circuits at right contain identical batteries, bulbs, and unknown identical elements labeled X. How do the ...
Tutorials in Introductory Physics
Two identical bubbles of gas form at the bottom of a lake, then rise to the surface. Because the pressure is mu...
An Introduction to Thermal Physics
(a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion? (b) Can y...
College Physics
Explain all answers clearly, using complete sentences and proper essay structure if needed. An asterisk (*) des...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardA long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA uniform rod of length b stands vertically upright on a rough floor and then tips over. What is the rods angular velocity when it hits the floor?arrow_forward
- Lara is running just outside the circumference of a carousel, looking for her favorite horse to ride, with a constant angular speed of 1.00 rad/s. Just as she spots the horse, one-fourth of the circumference ahead of her, the carousel begins to move, accelerating from rest at 0.050 rad/s2. a. Taking the time when the carousel begins to move as t = 0, when will Lara catch up to the horse? b. Lara mistakenly passes the horse and keeps running at constant angular speed. If the carousel continues to accelerate at the same rate, when will the horse draw even with Lara again?arrow_forwardIf you know the velocity of a particle, can you say anything about the particle’s angular momentum?arrow_forwardThe axis of Earth makes a 23.5 angle with a direction perpendicular to the plane of Earth’s orbit. As shown below, this axis precesses, making one complete rotation in 25,780 y. (a) Calculate the change in angular momentum in half this time. (b) What is the average torque producing this change in angular momentum? (c) If this torque were created by a pair of forces acting at the most effective point on the equator, what would the magnitude of each force be?arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardCan you assign an angular momentum to a particle without first defining a reference point?arrow_forwardA system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic energy?arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through one of its ends. Find the magnitude of the rodsangular momentum.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardFigure OQ10.6 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis, (d) The moment of inertia is the same small value for two axes, (e) The moment of inertia is the same for all three axes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License