
Concept explainers
A number of matrices are defined as
Answer the following questions regarding these matrices:
(a) What are the dimensions of the matrices?
(b) Identify the square, column, and row matrices.
(c) What are the values of the elements:
(d) Perform the following operations:
(a)

To calculate: The dimensions of the matrices,
Answer to Problem 2P
Solution:
Dimension of the matrix
Explanation of Solution
Given:
The matrices,
Formula used:
The representation of dimension of any matrix can be written as
Calculation:
Consider the matrix A,
Matrix A has
Therefore, the dimension of the matrix A is
Consider the matrix B,
Matrix B has
Therefore, the dimension of the matrix B is
Consider the matrix C,
Matrix C has
Therefore, the dimension of the matrix C is
Consider the matrix D,
Matrix D has
Therefore, the dimension of the matrix D is
Consider the matrix E,
Matrix E has
Therefore, the dimension of the matrix E is
Consider the matrix F,
The matrix F has
Therefore, the dimension of the matrix F is
Consider the matrix G,
Matrix G has
Therefore, the dimension of the matrix G is
(b)

The square matrix, column matrix and row matrix from the following matrices,
Answer to Problem 2P
Solution:
Matrices B and E are square matrices, matrix C is a column matrix and matrix G is a row matrix.
Explanation of Solution
Given:
The matrices,
Square matrix: A matrix M is said to be square matrix, if number of rows equals to number of columns.
Column Matrix: A matrix M is said to be column matrix, if number of rows can be any natural number but number of columns should be
Row matrix: A matrix M is said to be row matrix, if number of rows should be
Since, the dimension of the matrix B is
So, number of rows equal to number of columns.
Hence,
Since, the dimension of the matrix C is
So, number of rows is
Hence,
Since, the dimension of the matrix E is
So, number of rows equal to number of columns.
Hence,
Since, the dimension of the matrix G is
So, number of rows is
Hence,
Therefore, matrices B and E are square matrices, matrix C is a column matrix and matrix G is a row matrix.
(c)

To calculate: The value of the elements
Answer to Problem 2P
Solution:
The value of the elements
Explanation of Solution
Given:
The matrices,
Formula used:
The value of the element
Calculation:
Consider the matrix A,
Then the value of
Therefore,
Consider the matrix B,
Then the value of
Therefore,
Consider the matrix D,
Then the value of
Since, matrix D does not have
Therefore,
Consider the matrix E,
Then the value of
Therefore,
Consider the matrix F,
Then the value of
Therefore,
Consider the matrix G,
Then the value of
Therefore,
(d)

To calculate: The following operations,
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
Where,
Answer to Problem 2P
Solution:
(1)
(4)
(7)
(10)
Explanation of Solution
Given:
The matrices,
Formula used:
If
Addition of A and B is denoted by
Subtraction of A and B is denoted by
Multiply any scalar quantity
Transpose of the matrix A is denoted by
Multiplication of the matrices A and B is denoted by
Multiplication of two matrices is possible if interior dimensions are equal.
If matrix A has dimension
Calculation:
(1) Consider the matrices E and B,
Now, the addition of two matrices is,
Therefore,
(2) Consider the matrices A and F,
Now, the multiplication of two matrices is,
Therefore,
(3) Consider the matrices B and E,
Now, the subtraction of two matrices is,
Therefore,
(4) Consider a matrix B, and a scalar
The multiplication of a matrix B with a scalar
Therefore,
(5) Consider the matrices E and B,
Now the multiplication of two matrices E and B is,
Therefore,
(6) Consider the matrix C,
Now the transpose of the matrix C is,
Therefore,
(7) Consider the matrices B and A,
Now the multiplication of the two matrices B and A is,
Therefore,
(8) Consider the matrix D,
Now, the transpose of the matrix D is,
Therefore,
(9) Consider the matrices A and C,
Since, interior dimensions of
Therefore,
(10) Consider the identity matrix I of dimension
Since, the multiplication of the identity matrix with any matrix is again that matrix.
Hence,
Therefore,
(11) Consider the matrix E,
Now the transpose of the matrix E is,
The multiplication of the matrix E and its transpose is,
Therefore,
(12) Consider the matrix C,
Now the transpose of the matrix C is,
Multiplication of the matrix C and its transpose is,
Therefore,
Want to see more full solutions like this?
Chapter 9 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
College Algebra (Collegiate Math)
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Elementary Statistics: A Step By Step Approach
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Complex Analysis 2 z3+3 Q1: Evaluate cz(z-i)² the Figure. First exam 2024-2025 dz, where C is the figure-eight contour shown inarrow_forwardConstruct a state-level description (i.e., a state diagram with transitions) for aTuring machine that decides the language {a^(n)b^(2n)c^(n) | n ∈ N}.arrow_forwardFind the sum of products expansion of the function F (x, y, z) = ̄x · y + x · z in two ways: (i) using a table; and (ii) using Boolean identitiesarrow_forward
- The NOR operator, denoted as ↓, behaves as 0 ↓ 0 = 1, 0 ↓ 1 = 0, 1 ↓ 0 = 0,1 ↓ 1 = 0. Show that the any Boolean function over any number of variables can be expressed using onlyNOR operators (in addition to those variables and constants). HINT: Recall that any Boolean function hasa representation as a sum of products expansionarrow_forwardConsider the Turing machine given in lecture which decides the languageB = {w#w | w is a binary string}.Simulate the Turing machine to show that the string 1001#1001 will be accepted by the Turing machine. Show all steps.arrow_forwardQ/Find the Laurent series of (2-3) cos↓ around z = 1. 2-1arrow_forward
- #1). A technique is given with 150 mAs is 40 kV and produces an EI value = 400. Find the new EI value, if mAs is 75 and 34 kV are used.arrow_forwardQ3: Answer the following: (i) Let f(z) is an analytic function in a simply connected domain S and y is a simple, closed, positively oriented contour lying in S. Prove that f, f(z)dz = 0.arrow_forwardUse the method of undetermined coefficients to solve the given nonhomogeneous system.X' = −1 33 −1 X + −4t2t + 2 X(t) =arrow_forward
- Detailed report without CHATGPT, accept if you can give with code and plots, previous reported . Do not waste my question.arrow_forwardPlease do not give inappropriate solutions, previous question reported, i need correct report solution for this, NO CHATGPTarrow_forwardNeed detailed report without CHATGPT, accept if you can give with code and plots, previous reported Plots are required.arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning





