Foundations of Astronomy, Enhanced
13th Edition
ISBN: 9781305980686
Author: Michael A. Seeds; Dana Backman
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 28RQ
To determine
The reason for which it is difficult to find the most and least luminous star.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two stars of the same diameter or observed to have surface temperatures of 4000 Kelvin and 16,000 Kelvin. Which star is probably the brighter of the two? How many times brighter?
Many of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and others are blue giants (such as Rigel) or red giants (such as Betelgeuse). Generally, such stars have a luminosity of 103 to 105 times that of our Sun!
Ignoring any effects from our atmosphere, how bright would a star with a luminosity of 8380 solar luminosities be if it were located 620 light years from Earth?
(You will need to convert some values.)
W/m²
For comparison, if you were 1 meter from a regular 100 W light bulb, the brightness would be 7.96 W/ m². (Since stars are not this bright, your answer should be considerably less!) Kind of amazing you can see these things, isn't it?
L = ( 0.0813 ) x (Rs) ^2 x 10-0.4m x Ls
where L = luminosity of the desired star
Rs = distance of the stars in light years
m = apparent magnitude of star
Ls = Luminosity of Sun = 1.00
The calculated value of Polaris' luminosity is:
a. 2382 times Ls
b. 6040 times Ls
c. 5566 times Ls
d. 2612 times Ls
Chapter 9 Solutions
Foundations of Astronomy, Enhanced
Ch. 9 - Prob. 1RQCh. 9 - Why was the Hipparcos satellite able to make more...Ch. 9 - Prob. 3RQCh. 9 - Prob. 4RQCh. 9 - Prob. 5RQCh. 9 - Prob. 6RQCh. 9 - Prob. 7RQCh. 9 - Prob. 8RQCh. 9 - Prob. 9RQCh. 9 - Prob. 10RQ
Ch. 9 - Prob. 11RQCh. 9 - Prob. 12RQCh. 9 - Prob. 13RQCh. 9 - Prob. 14RQCh. 9 - Prob. 15RQCh. 9 - Prob. 16RQCh. 9 - Prob. 17RQCh. 9 - Prob. 18RQCh. 9 - Prob. 19RQCh. 9 - Prob. 20RQCh. 9 - Prob. 21RQCh. 9 - Prob. 22RQCh. 9 - Prob. 23RQCh. 9 - Prob. 24RQCh. 9 - Prob. 25RQCh. 9 - Prob. 26RQCh. 9 - Prob. 27RQCh. 9 - Prob. 28RQCh. 9 - Prob. 29RQCh. 9 - Prob. 30RQCh. 9 - Prob. 31RQCh. 9 - Prob. 32RQCh. 9 - How Do We Know? In what way are basic scientific...Ch. 9 - Prob. 1DQCh. 9 - Prob. 2DQCh. 9 - Prob. 3DQCh. 9 - Prob. 4DQCh. 9 - Prob. 5DQCh. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Complete the following table:Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Look at the image on the opening page of this...Ch. 9 - Prob. 2LTLCh. 9 - Prob. 3LTLCh. 9 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What elements are stars mostly made of? How do we know this?arrow_forwardReview this spectral data for five stars. Which is the hottest? Coolest? Most luminous? Least luminous? In each case, give your reasoning.arrow_forwardIf a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forward
- We will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, lets assume a white dwarf has a temperature roughly twice as large as a red giant star. As for their stellar radii, the white dwarf has a radius about 1/10000th that of a red giant star. With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf? (Put differently, find the ratio of their luminosities a.k.a. how many times more luminous is the red giant than the white dwarf? An answer of less than 1 means the white dwarf is more luminous, an answer of 1 means they have the same luminosity, and an answer greater than 1 means the red giant is more luarrow_forwardWhat star is a white dwarf that is much more dim and hotter than the sun. and which type of stars undergo nuclear fusion?arrow_forwardIf a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forward
- Two stars have the exact same luminosity, but star Y is four times dimmer looking that star X. This means that???? 1) star Y is four times as far away as star X 2) star Y is 16 times as far away as star X 3) star Y is half as far away as star X 4) star Y is twice as far away as star X 5) we can't figure out the relative distance of the two stars from the information givenarrow_forwardHow would two stars of equal luminosity-one blue and the other red-appear in an image taken through a filter that passes mainly blue light? How would their appearance change in an image taken through a filter that transmits mainly red light?arrow_forwardDust was originally discovered because the stars in certain clusters seemed to be fainter than expected. Suppose a star is behind a cloud of dust that dims its brightness by a factor of 100. Suppose you do not realize the dust is there. How much in error will your distance estimate be? Can you think of any measurement you might make to detect the dust?arrow_forward
- At the average density of the interstellar medium, 1 atom per cm3, how big a volume of material must be used to make a star with the mass of the Sun? What is the radius of a sphere this size? Express your answer in light-years.arrow_forwardDescribe several characteristics that distinguish population I stars from population II stars.arrow_forwardSuppose you are given the task of measuring the colors of the brightest stars, listed in Appendix J, through three filters: the first transmits blue light, the second transmits yellow light, and the third transmits red light. If you observe the star Vega, it will appear equally bright through each of the three filters. Which stars will appear brighter through the blue filter than through the red filter? Which stars will appear brighter through the red filter? Which star is likely to have colors most nearly like those of Vega?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning