
Mastering Physics with Pearson eText -- Standalone Access Card -- for College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321908803
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 20P
A 9.5 kg dog takes a nap in a canoe and wakes up to find the canoe has drifted out onto the lake but now is stationary. He walks along the length of the canoe at 0.50 m/s, relative to the water, and the canoe simultaneously moves in the opposite direction at 0.1 5 m/s. What is the mass of the canoe?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
pls help
J
K
L
The graph in the figure shows the position of an object as a function of time. The letters H-L represent
particular moments of time. At which moments shown (H, I, etc.) is the speed of the object the greatest?
+
Position
H
I
K
Time
1. Two pendula of slightly different length oscillate next to each other. The short one
oscillates with frequency 0.52 Hz and the longer one with frequency 0.50 Hz. If
they start of in phase determine their phase difference after 75 s.
Chapter 9 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for College Physics: A Strategic Approach (3rd Edition)
Ch. 9 - Rank in order, from largest to smallest, the...Ch. 9 - Starting from rest, object 1 is subject to a 12 N...Ch. 9 - A 0.2 kg plastic cart and a 20 kg lead cart can...Ch. 9 - Two pucks, of mass m and 4m, lie on a frictionless...Ch. 9 - Prob. 5CQCh. 9 - Two students stand at rest, facing each other on...Ch. 9 - A 2 kg cart rolling to the right at 3 m/s runs...Ch. 9 - Automobiles are designed with crumple zones...Ch. 9 - You probably know that it feels better to catch a...Ch. 9 - In the early days of rocketry, some people claimed...
Ch. 9 - Two ice skaters, Megan and Jason, push off from...Ch. 9 - Suppose a rubber ball and a steel ball collide....Ch. 9 - While standing still on a basketball court, you...Ch. 9 - To win a prize at the county fair, youre trying to...Ch. 9 - Rank in order, from largest to smallest, the...Ch. 9 - Monica stands at the edge of a circular platform...Ch. 9 - If the earth warms significantly, the polar ice...Ch. 9 - The disks shown in Figure Qg.181 have equal mass....Ch. 9 - Curling is a sport played with 20 kg stones that...Ch. 9 - Two balls are hung from cords. The first ball, of...Ch. 9 - Figure Q9.21 shows two blocks sliding on a...Ch. 9 - Two friends are sitting in a stationary canoe. At...Ch. 9 - Two blocks, with masses m1, = 2.5 kg and m2 = 14...Ch. 9 - A small puck is sliding to the right with...Ch. 9 - A red ball, initially at rest, is simultaneously...Ch. 9 - A 4.0-m-diameter playground merry-go-round, with a...Ch. 9 - A disk rotates freely on a vertical axis with an...Ch. 9 - At what speed do a bicycle and its rider, with a...Ch. 9 - A 57 g tennis ball is served at 45 m/s. If the...Ch. 9 - A student throws a 120 g snowball at 7.5 m/s at...Ch. 9 - In Figure P9.4, what value of Fmax gives an...Ch. 9 - A sled and rider, gliding over horizontal,...Ch. 9 - Use the impulse-momentum theorem to find how long...Ch. 9 - a. A 2.0 kg object is moving to the right with a...Ch. 9 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 9 - A child is sliding on a sled at 1.5 m/s to the...Ch. 9 - An ice hockey puck slides along the ice at 12 m/s....Ch. 9 - As part of a safety investigation, two 1400 kg...Ch. 9 - In a Little League baseball game, the 145 g ball...Ch. 9 - A small, 100 g cart is moving at 1.20 m/s on a...Ch. 9 - A man standing on very slick ice fires a rifle...Ch. 9 - A 2.7 kg block of wood sits on a frictionless...Ch. 9 - A strong man is compressing a lightweight spring...Ch. 9 - A 10,000 kg railroad car is rolling at 2.00 m/s...Ch. 9 - A 5000 kg t rain car, with its top open, is...Ch. 9 - A 55 kg hunter, standing on frictionless ice,...Ch. 9 - A 9.5 kg dog takes a nap in a canoe and wakes up...Ch. 9 - Prob. 21PCh. 9 - A 71 kg baseball player jumps straight up to catch...Ch. 9 - A kid at the junior high cafeteria wants to propel...Ch. 9 - The parking brake on a 2000 kg Cadillac has...Ch. 9 - A 2.0 kg block slides along a frictionless surface...Ch. 9 - Erica (36 kg) and Danny (47 kg) are bouncing on a...Ch. 9 - At a wild-west show, a marksman fires a bullet at...Ch. 9 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 9 - Two particles collide and bounce apart. Figure...Ch. 9 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 9 - A firecracker in a coconut blows the coconut into...Ch. 9 - What is the angular momentum of the moon around...Ch. 9 - A little girl is going on the merry-go-round for...Ch. 9 - What is the angular momentum about the axle of the...Ch. 9 - What is the angular momentum about the axle of the...Ch. 9 - Divers change their body position in midair while...Ch. 9 - Prob. 37PCh. 9 - What is the impulse on a 3.0 kg particle that...Ch. 9 - A 600 g air-track glider collides with a spring at...Ch. 9 - Far in space, where gravity is negligible, a 425...Ch. 9 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 9 - A 200 g ball is dropped from a height of 2.0 m and...Ch. 9 - Figure P9.43 is a graph of the force exerted by...Ch. 9 - A sled slides along a horizontal surface for which...Ch. 9 - A 140 g baseball is moving horizontally to the...Ch. 9 - Squids rely on jet propulsion, a versatile...Ch. 9 - The flowers of the bunchberry plant open with...Ch. 9 - a. With what speed are pollen grains ejected from...Ch. 9 - A tennis player swings her 1000 g racket with a...Ch. 9 - A 20 g ball of clay is thrown horizontally at 30...Ch. 9 - Dan is gliding on his skateboard at 4.0 m/s. He...Ch. 9 - James and Sarah stand on a stationary cart with...Ch. 9 - Ethan, whose mass is 80 kg, stands at one end of a...Ch. 9 - A small cart rolls freely along the floor. As it...Ch. 9 - Three identical train cars, coupled together, are...Ch. 9 - A 110 kg linebacker running at 2.0 m/s and an 82...Ch. 9 - Most geologists believe that the dinosaurs became...Ch. 9 - Two ice skaters, with masses of 75 kg and 55 kg,...Ch. 9 - Prob. 59GPCh. 9 - One billiard ball is shot east at 2.00 m/s. A...Ch. 9 - A 10 g bullet is fired into a 10 kg wood block...Ch. 9 - A typical raindrop is much more massive than a...Ch. 9 - A 15 g bullet is fired at 610 m/s into a 4.0 kg...Ch. 9 - Two 500 g blocks of wood are 2.0 m apart on a...Ch. 9 - A 495 kg cannon fires a 10.0 kg cannonball with a...Ch. 9 - Laura, whose mass is 35 kg, jumps horizontally off...Ch. 9 - A spaceship of mass 2.0 106 kg is cruising at a...Ch. 9 - At the county fair, Chris throws a 0.15 kg...Ch. 9 - Figure P9.70 shows a collision between three balls...Ch. 9 - The carbon isotope 14C is used for carbon dating...Ch. 9 - A 1.0-m-long massless rod is pivoted at one end...Ch. 9 - A 200 g puck revolves in a circle on a...Ch. 9 - Figure P9.74 shows a 100 g puck revolving at 100...Ch. 9 - A 2.0 kg, 20-cm-diameter turntable rotates at 100...Ch. 9 - Joey, from Example 9.10, stands at rest at the...Ch. 9 - A 3.0-m-diameter merry-go-round with a mass of 250...Ch. 9 - Disk A, with a mass of 2.0 kg and a radius of 40...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...Ch. 9 - Consider a golf club hitting a golf ball. To a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
MAKE CONNECTIONS Which chemical group is most likely to be responsible for an organic molecule behaving as a ba...
Campbell Biology (11th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A mass is connect to a vertical revolving axle by two strings of length L, each making an angle of 45 degrees with the axle, as shown. Both the axle and mass are revolving with angular velocity w, Gravity is directed downward. The tension in the upper string is T_upper and the tension in the lower string is T_lower.Draw a clear free body diagram for mass m. Please include real forces only.Find the tensions in the upper and lower strings, T_upper and T_lowerarrow_forward2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s the circumference of the ripple is 20 m. Calculate the velocity of the wave.arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram. A. How much energy does the ice absorb as heat when it melts? B. How much work is involved in melting the ice? C. What is the total change in energy for melting the ice? D. What is the enthalpy change for melting the ice? E. What is the entropy change for melting the ice? F. What is the change in Helmholtz energy for melting the ice? G. What is the change in Gibbs energy for melting the ice?arrow_forward
- In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)arrow_forwardNow add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.arrow_forwardFor a tornadoes and hurricanes, which of the following is most critical? an alert a watch a warning a predictionarrow_forward
- When a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forwardA 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forward
- A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forwardFor what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY