![EBK MINDTAP FOR HERMAN'S DELMAR'S STAND](https://www.bartleby.com/isbn_cover_images/9781337900614/9781337900614_largeCoverImage.gif)
To what is the turning force of a d’Arsonval meter movement proportional?
![Check Mark](/static/check-mark.png)
The quantity to which the turning force of a d’Arsonval meter movement proportional to?
Answer to Problem 1RQ
The turning force of a d’Arsonval meter movement is proportional to the strength of the magnetic field developed in the current carrying coil.
Explanation of Solution
Description:
The underlying principle behind operation of the d’Arsonval meter movementis that like magnetic poles repel each other. The turning force of depends on the repulsion of magnetic fields. A magnetic field is created around the coilas current passes through it.
The flow of current is such that the polarity of the permanent magnet and that of the magnetic pole created around the coil is the same. As like magnetic poles repel each other, the coil is deflected away from the pole of the magnet. A spring provides the damping movement to the turning of the coil. The turning distance against the spring is proportional to the strength of the magnetic field developed in the current carrying coil.
Conclusion:
The quantity on which the turning force of a d’Arsonval meter movement is dependant has been explained.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK MINDTAP FOR HERMAN'S DELMAR'S STAND
- NO AI PLEASE.arrow_forward2-3) For each of the two periodic signals in the figures below, find the exponential Fourier series and sketch the magnitude and angle spectra. -5 ΟΙ 1 1- (a) (b) -20π -10x -π Π 10m 20m 1-arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- In the op-amp circuit shown in Fig. P8.32,uin(t) = 12cos(1000t) V,R = 10 k Ohm , RL = 5 k Ohm, and C = 1 μF. Determine the complexpower for each of the passive elements in the circuit. Isconservation of energy satisfied?arrow_forward2-4) Similar to Lathi & Ding prob. 2.9-4 (a) For signal g(t)=t, find the exponential Fourier series to represent g(t) over the interval(0, 1). (b) Sketch the original signal g(t) and the everlasting signal g'(t) represented by the same Fourier series. (c) Verify Parseval's theorem [eq. (2.103b)] for g'(t), given that: = n 1 6arrow_forward8.24 In the circuit of Fig. P8.24, is(t) = 0.2sin105t A,R = 20 W, L = 0.1 mH, and C = 2 μF. Show that the sum ofthe complex powers for the three passive elements is equal to thecomplex power of the source.arrow_forward
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)