The value of

Explanation of Solution
Given:
The linear differential equation is
Concept used:
Runga-Kutta method:
The solution of a linear differential equation of the form
Euler’s method
The approximated solution for the first order linear differential equation of the form
Improved Euler’s method:
As per the Improved Euler’s method the solution of a linear differential equation of the form
Calculation:
The linear differential equation is given as follows:
The value of step size is given as
The initial value is given as
The given differential equation is of the form
This implies that
Obtain the solution of the given differential equation by Euler’s method for
As per the Euler’s method the solution of a linear differential equation of the form
Substitute
Substitute the value of
Therefore, the value of
Similarly, use the above procedure and the value of
|
| |
Table
Table
Obtain the solution of the given differential equation by Improved Euler’s method for
As per the Improved Euler’s method the solution of a linear differential equation of the form
Substitute
Substitute the value of
Substitute
Substitute the value of
Therefore, the value of
Similarly, with above procedure used the value of
|
| |
Table
Table
Obtain the solution of the given differential equation by Euler’s modified method for
As per the Runga-Kutta method of fourth order the value of
Here, the value of
Substitute
Calculate the value of
Calculate the value of
Further solve the above equation.
Calculate the value of
Calculate the value of
Substitute the value of
Therefore, the value of
Similarly, with above procedure used the value of
|
| |
Table
Table
The table which shows a comparison between the values of
|
|
|
|
|
| |
Table
Thus, table
Want to see more full solutions like this?
Chapter 9 Solutions
Differential Equations with Boundary-Value Problems
- 12. Determine an equation for the cosine function shown: 2π 凯 Marrow_forward1. Sketch a graph of: y = 2 sin (3x-377) +3. 2 Show your calculations for the transformation of 5 key points OR List all of the transformations.arrow_forward2. Use a compound angle formula to determine the exact value of sin 13π 12arrow_forward
- Pls help asap. Thank you!arrow_forwardII 7. Give an equation for a transformed sine function with an amplitude of 3, a period of 4' and a phase shift of 43 rad to the right. a. b. yol-2(1-1) = 3 sin 7-185(1-5) y 3 sin 8t+ = 8. Solve 2 cos x - 1 = 0 on the interval x = [0,2]. 2元 Π a. X X 3 3 元 b. x = wh 3 x = 5元 3 wy C. y= 3 sin 5 d. y= 3 sin 4x C. X -- 3 3 2元 d. ---- 3 4π 3 Jarrow_forwardPls help asap. Thank you!arrow_forward
- Pls help asap. Thank you!arrow_forwardPls help asap. Thank you!arrow_forward5. Determine the phase shift of the sinusoidal function y = 5 cos [2(x − )] + 3. a. 3 rad to the right b. 3 rad to the left c. π rad to the left d. π rad to the right a. 6. The period of the function y 2元 = sin 2x is b. π C. 1 d. 2arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





