Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. The
b. The differential equation y′y = 2t2 is first-order, linear, and separable.
c. The function y = t + 1/t satisfies the initial value problem ty′ + y = 2t, y(1) = 2.
d. The direction field for the differential equation y′(t) = t + y(t) is plotted in the ty-plane.
e. Euler’s method gives the exact solution to the initial value problem y′ = ty2, y(0) = 3 on the interval [0, a] provided a is not too large.
a.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The statement is the differential equation is first order, linear, and separable.
The given equation is
The order of this equation is one.
Thus, the equation is in first order.
The function y and its derivatives are in first order and not composed with other functions.
A linear equation cannot have products or quotients of y and its derivatives.
Thus, the equation is linear.
In the equation
But here the equation is not separable.
Therefore, the equation is in first order, linear but not separable.
Thus, the statement is false.
b.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The given equation is
The order of this equation is one.
Thus, the equation is in first order.
Here, the function y and its derivatives are in first order and not composed with other functions.
A linear equation cannot have products or quotients of y and its derivatives.
Thus, the equation is not linear.
In the equation
But here the equation is separable.
Therefore, the equation is in first order, separable but not linear.
Thus, the statement is False.
c.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
The given differential equation is
The initial value problem is
Take derivative on both sides in
Substitute the value of
Therefore, the function
Thus, the statement is true.
d.
Whether the direction field for the differential equation
Answer to Problem 1RE
True, the direction field for the differential equation
Explanation of Solution
The differential equation is
The equation is in first order
So, the notation
The differential equation at each point
A direction field is a picture that shows the slope of the solution at
Therefore the direction field for the differential equation
e.
Whether the given statement is true or false.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
The carry capacity either greater than or less than the value predicted by the model.
The given initial value problem is
Direction fields are the basis for many computer based methods for approximating solutions of a differential equation.
The exact solution of the initial value problem at grid points is
Which is generally unknown unless solve the original differential equation.
The goal is to compute a set of approximations to the exact solution at the grid points.
Therefore, the given assumption is false Euler method gives approximate solution not exact solution.
Thus, the statement is false.
Want to see more full solutions like this?
Chapter 9 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
- In each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forwardB 2- The figure gives four points and some corresponding rays in the xy-plane. Which of the following is true? A B Angle COB is in standard position with initial ray OB and terminal ray OC. Angle COB is in standard position with initial ray OC and terminal ray OB. C Angle DOB is in standard position with initial ray OB and terminal ray OD. D Angle DOB is in standard position with initial ray OD and terminal ray OB.arrow_forwardtemperature in degrees Fahrenheit, n hours since midnight. 5. The temperature was recorded at several times during the day. Function T gives the Here is a graph for this function. To 29uis a. Describe the overall trend of temperature throughout the day. temperature (Fahrenheit) 40 50 50 60 60 70 5 10 15 20 25 time of day b. Based on the graph, did the temperature change more quickly between 10:00 a.m. and noon, or between 8:00 p.m. and 10:00 p.m.? Explain how you know. (From Unit 4, Lesson 7.) 6. Explain why this graph does not represent a function. (From Unit 4, Lesson 8.)arrow_forward
- Find the area of the shaded region. (a) 5- y 3 2- (1,4) (5,0) 1 3 4 5 6 (b) 3 y 2 Decide whether the problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. STEP 1: Consider the figure in part (a). Since this region is simply a triangle, you may use precalculus methods to solve this part of the problem. First determine the height of the triangle and the length of the triangle's base. height 4 units units base 5 STEP 2: Compute the area of the triangle by employing a formula from precalculus, thus finding the area of the shaded region in part (a). 10 square units STEP 3: Consider the figure in part (b). Since this region is defined by a complicated curve, the problem seems to require calculus. Find an approximation of the shaded region by using a graphical approach. (Hint: Treat the shaded regi as…arrow_forwardSolve this differential equation: dy 0.05y(900 - y) dt y(0) = 2 y(t) =arrow_forwardSuppose that you are holding your toy submarine under the water. You release it and it begins to ascend. The graph models the depth of the submarine as a function of time. What is the domain and range of the function in the graph? 1- t (time) 1 2 4/5 6 7 8 -2 -3 456700 -4 -5 -6 -7 d (depth) -8 D: 00 t≤ R:arrow_forward0 5 -1 2 1 N = 1 to x = 3 Based on the graph above, estimate to one decimal place the average rate of change from x =arrow_forwardComplete the description of the piecewise function graphed below. Use interval notation to indicate the intervals. -7 -6 -5 -4 30 6 5 4 3 0 2 1 -1 5 6 + -2 -3 -5 456 -6 - { 1 if x Є f(x) = { 1 if x Є { 3 if x Єarrow_forwardComplete the description of the piecewise function graphed below. 6 5 -7-6-5-4-3-2-1 2 3 5 6 -1 -2 -3 -4 -5 { f(x) = { { -6 if -6x-2 if -2< x <1 if 1 < x <6arrow_forwardLet F = V where (x, y, z) x2 1 + sin² 2 +z2 and let A be the line integral of F along the curve x = tcost, y = t sint, z=t, starting on the plane z = 6.14 and ending on the plane z = 4.30. Then sin(3A) is -0.598 -0.649 0.767 0.278 0.502 0.010 -0.548 0.960arrow_forwardLet C be the intersection of the cylinder x² + y² = 2.95 with the plane z = 1.13x, with the clockwise orientation, as viewed from above. Then the value of cos (₤23 COS 2 y dx xdy+3 z dzis 3 z dz) is 0.131 -0.108 -0.891 -0.663 -0.428 0.561 -0.332 -0.387arrow_forward2 x² + 47 The partial fraction decomposition of f(x) g(x) can be written in the form of + x3 + 4x2 2 C I where f(x) = g(x) h(x) = h(x) + x +4arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning