A First Course in Differential Equations with Modeling Applications (MindTap Course List)
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
11th Edition
ISBN: 9781305965720
Author: Dennis G. Zill
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 1RE

In Problems 1–4 construct a table comparing the indicated values of y(x) using Euler’s method, the improved Euler’s method, and the RK4 method. Compute to four rounded decimal places. First use h = 0.1 and then use h = 0.05.

y = 2 ln x y , y ( 1 ) = 2 ; y ( 1.1 ) , y ( 1.2 ) , y ( 1.3 ) , y ( 1.4 ) , y ( 1.5 )

Expert Solution & Answer
Check Mark
To determine

The value of y(1.1), y(1.2), y(1.3), y(1.4) and y(1.5) for the differential equation y=2lnxy by using Euler’s method, Improved Euler’s method and Runga-Kutta method of fourth order.

Explanation of Solution

Given:

The linear differential equation is y=2lnxy such that y(1)=2 and the value of step size is h=0.1 and h=0.05.

Concept used:

Runga-Kutta method:

The solution of a linear differential equation of the form y=f(x,y) is given as follows:

yn+1=yn+16(k1+2k2+2k3+k4), where

k1=f(xn,yn)k2=f((xn+h2),(yn+hk12))k3=f((xn+h2),(yn+hk22))k4=f((xn+h),(yn+hk3))

Euler’s method

The approximated solution for the first order linear differential equation of the form y=f(x,y) with initial value as y(x0)=y0 with a step size of h is given as follows:

yn+1=yn+hf(xn,yn), where xn=x0+nh.

Improved Euler’s method:

As per the Improved Euler’s method the solution of a linear differential equation of the form y=f(x,y) is given as follows:

yn+1*=yn+hf(xn,yn)yn+1=yn+h2(f(xn,yn)+f(xn+1,yn+1*))

Calculation:

The linear differential equation is given as follows:

y=2ln(xy)

The value of step size is given as h=0.1 and h=0.05.

The initial value is given as y(1)=2.

The given differential equation is of the form y=f(x,y).

f(x,y)=ln(xy)

This implies that x0=1 and y0=2.

Obtain the solution of the given differential equation by Euler’s method for h=0.1.

As per the Euler’s method the solution of a linear differential equation of the form y=f(x,y) is given as follows:

yn+1=yn+hf(xn,yn)(1)

Substitute 0 for n in equation (1).

y1=y0+hf(x0,y0)

Substitute the value of x0,y0 and h in the above equation.

y1=2+(0.1)f(1,2)=2+(0.1)2ln(2)=2+0.1386=2.1386

Therefore, the value of y1 or y(1.1) is 2.1386.

Similarly, use the above procedure and the value of y(1.2),y(1.3).y(1.4) and y(1.5).

xn

yn(Euler’s Method)

h=0.1

yn(Euler’s Method)

h=0.05

1.002.00002.0000
1.05 2.0693
1.102.13862.1469
1.15 2.2328
1.202.30972.3272
1.25 2.4299
1.302.51362.5409
1.35 2.6604
1.402.75042.7883
1.45 2.9245
1.503.02013.0690

Table 1

Table 1 represents the value of y(1.2),y(1.3).y(1.4) and y(1.5) calculated by Euler’s method.

Obtain the solution of the given differential equation by Improved Euler’s method for h=0.1.

As per the Improved Euler’s method the solution of a linear differential equation of the form y=f(x,y) is given as follows:

yn+1*=yn+hf(xn,yn)(2)yn+1=yn+h2(f(xn,yn)+f(xn+1,yn+1*))  (3)

Substitute 0 for n in equation (2).

y1*=y0+hf(x0,y0)

Substitute the value of x0,y0 and h in the above equation.

y1*=2+(0.1)f(1,2)=2+(0.1)2ln(2)=2+0.1386=2.1386

Substitute 0 for n in equation (3).

y1=y0+h2(f(x0,y0)+f(x1,y1*))

Substitute the value of x0,y0,x1,y1* and h in the above equation.

y1=2+0.12(f(1,2)+f(1.1,2.1386))=2+(0.05)(2ln(2)+2ln(1.12.1386))=2+(0.05)(1.3863+1.7109)=2.1549

Therefore, the value of y1 or y(1.1) is 2.1549.

Similarly, with above procedure used the value of y(1.2),y(1.3).y(1.4) and y(1.5).

xn

yn (Improved Euler’s Method)

h=0.1

yn (Improved Euler’s Method)

h=0.05

1.002.00002.0000
1.05 2.0735
1.102.15492.1554
1.15 2.2459
1.202.34392.3450
1.25 2.4527
1.302.56722.5689
1.35 2.6937
1.402.82462.8269
1.45 2.9686
1.503.11573.1187

Table 2

Table 2 represents the value of y(1.2),y(1.3).y(1.4) and y(1.5) calculated by Improved Euler’s method.

Obtain the solution of the given differential equation by Euler’s modified method for h=0.1.

As per the Runga-Kutta method of fourth order the value of yn+1 is given as follows:

yn+1=yn+16(k1+2k2+2k3+k4)(4)

Here, the value of k1,k2,k3 and k4 is given as follows:

k1=f(xn,yn)(5)k2=f((xn+h2),(yn+hk12))(6)k3=f((xn+h2),(yn+hk22))(7)k4=f((xn+h),(yn+hk3))(8)

Substitute 0 for n in equation (4).

y1=y0+h6(k1+2k2+2k3+k4)(9)

Calculate the value of k1 as follows:

k1=f(x0,y0)=f(1,2)=2ln(2)=1.3863

Calculate the value of k2 as follows:

k2=f((x0+h2),(y0+hk12))=f((1+0.05),(2+((0.05)(1.3863))))=f(1.05,2.069315)

Further solve the above equation.

k2=2ln(1.052.069315)=1.5520

Calculate the value of k1 as follows:

k3=f((x+h2),(y0+hk22))=f((1.05),(2.0776))=2ln(1.052.0776)=1.5600

Calculate the value of k4 as follows:

k4=f((x0+h),(y0+hk3))=f((1.1),(2.1560))=2ln(1.12.1560)=1.7271

Substitute the value of k1,k2,k3,k4 and y0 in equation (9).

y1=y0+0.16(k1+2k2+2k3+k4)=2+0.16(1.3863+21.5520+21.5600+1.7271)=2+0.1556=2.1556

Therefore, the value of y1 or y(1.1) is 2.1556.

Similarly, with above procedure used the value of y(1.2),y(1.3).y(1.4) and y(1.5).

xn

yn (Runga-Kutta 4th order)

h=0.1

yn (Runga-Kutta 4th order)

h=0.05

1.002.00002.0000
1.05 2.0736
1.102.15562.1556
1.15 2.2462
1.202.34542.3454
1.25 2.4532
1.302.56952.5695
1.35 2.6944
1.402.82782.8278
1.45 2.9696
1.503.11973.1197

Table 3

Table 3 represents the value of y(1.2),y(1.3).y(1.4) and y(1.5) calculated by Runga-Kutta method.

The table which shows a comparison between the values of y(1.2),y(1.3), y(1.4) and y(1.5) obtained by Euler’s method, improved Euler’s method and Runga-Kutta method of fourth order is as below.

xn

yn (Euler’s Method)

h=0.1

yn (Euler’s Method)

h=0.05

yn (Improved Euler’s Method)

h=0.1

yn (Improved Euler’s Method)

h=0.05

yn (Runga-Kutta 4th order)

h=0.1

yn (Runga-Kutta 4th order)

h=0.05

1.002.00002.00002.00002.00002.00002.0000
1.05 2.0693 2.0735 2.0736
1.102.13862.15692.15492.15542.15562.1556
1.15 2.2328 2.2459 2.2462
1.202.30972.32722.34392.34502.34542.3454
1.25 2.4299 2.4527 2.4532
1.302.51362.54092.56722.56892.56952.5695
1.35 2.6604 2.6937 2.6944
1.402.75042.78832.82462.82692.82782.8278
1.45 2.9245 2.9686 2.9696
1.503.02013.06903.11573.11873.11973.1197

Table 4

Thus, table 4 shows the comparison of the values of y(1.2),y(1.3), y(1.4) and y(1.5) obtained by Euler’s method, improved Euler’s method and Runga-Kutta method of fourth order.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In Problems 2–4, for the given functions fand g find: (a) (f° g) (2) (b) (g • f)(-2) (c) (fo f) (4) (d) (g ° 8) (-1) 2. f(x) = 3x – 5; g(x) = 1 – 2r 3. f(x) = Vx + 2: g(x) = 2x² + 1 4. f(x) = e"; g(x) = 3x – 2
In Problems 11–20, for the given functions f and g. find: (a) (f° g)(4) (b) (g•f)(2) (c) (fof)(1) (d) (g ° g)(0) \ 11. f(x) = 2x; g(x) = 3x² + 1 12. f(x) = 3x + 2; g(x) = 2x² – 1 1 13. f(x) = 4x² – 3; g(x) = 3 14. f(x) = 2x²; g(x) = 1 – 3x² 15. f(x) = Vx; 8(x) = 2x 16. f(x) = Vx + 1; g(x) = 3x %3D 1. 17. f(x) = |x|; g(x) = 18. f(x) = |x – 2|: g(x) x² + 2 2 x + 1 x² + 1 19. f(x) = 3 8(x) = Vĩ 20. f(x) = x³/2; g(x) = X + 1'
For f(x) and g(x) given in Problems 35–38, find (a) (f + g)(x) (b) (f – g)(x) (c) (f'g)(x) (d) (f/g)(x) 35. f(x) = 3x g(x) = x' 36. f(x) = Vx g(x) = 1/x 37. f(x) = V2x g(x) = x² 38. f(x) = (x – 1)? g(x) = 1 – 2x Click to %3D For f(x) and g(x) given in Problems 39–42, find (a) (fº g)(x) (b) (g •f)(x) (c) ƒ(f(x)) (d) f(x) = (f·f)(x) 39. f(x) = (x – 1)³ g(x) = 1 – 2x 40. f(x) = 3x g(x) = x' – 1 41. f(x) = 2Vx g(x) = x* + 5 %3D %3D 1 42. f(x) = g(x) = 4x + 1

Chapter 9 Solutions

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

Ch. 9.1 - Consider the initial-value problem y′ = (x + y –...Ch. 9.1 - Consider the initial-value problem y = 2y, y(0) =...Ch. 9.1 - Repeat Problem 13 using the improved Eulers...Ch. 9.1 - Repeat Problem 13 using the initial-value problem...Ch. 9.1 - Repeat Problem 15 using the improved Euler’s...Ch. 9.1 - Consider the initial-value problem y = 2x 3y + 1,...Ch. 9.1 - Repeat Problem 17 using the improved Euler’s...Ch. 9.1 - Repeat Problem 17 for the initial-value problem y′...Ch. 9.1 - Repeat Problem 19 using the improved Euler’s...Ch. 9.1 - Answer the question Why not? that follows the...Ch. 9.2 - Use the RK4 method with h = 0.1 to approximate...Ch. 9.2 - Assume that (4). Use the resulting second-order...Ch. 9.2 - In Problems 3–12 use the RK4 method with h = 0.1...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 3–12 use the RK4 method with h = 0.1...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - In Problems 312 use the RK4 method with h = 0.1 to...Ch. 9.2 - If air resistance is proportional to the square of...Ch. 9.2 - Consider the initial-value problem y = 2y, y(0) =...Ch. 9.2 - Repeat Problem 16 using the initial-value problem...Ch. 9.2 - Consider the initial-value problem y′ = 2x – 3y +...Ch. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - In Problems 58 use the Adams-Bashforth-Moulton...Ch. 9.4 - Use Eulers method to approximate y(0.2), where...Ch. 9.4 - Use Euler’s method to approximate y(1.2), where...Ch. 9.4 - Prob. 3ECh. 9.4 - In Problems 3 and 4 repeat the indicated problem...Ch. 9.4 - Prob. 5ECh. 9.5 - In Problems 110 use the finite difference method...Ch. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - In Problems 1 – 10 use the finite difference...Ch. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - The electrostatic potential u between two...Ch. 9.5 - Prob. 13ECh. 9 - In Problems 14 construct a table comparing the...Ch. 9 - In Problems 14 construct a table comparing the...Ch. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RE
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Text book image
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Text book image
Calculus Volume 1
Math
ISBN:9781938168024
Author:Strang, Gilbert
Publisher:OpenStax College
Text book image
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Text book image
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY