![A First Course in Differential Equations with Modeling Applications (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305965720/9781305965720_largeCoverImage.gif)
In Problems 1–4 construct a table comparing the indicated values of y(x) using Euler’s method, the improved Euler’s method, and the RK4 method. Compute to four rounded decimal places. First use h = 0.1 and then use h = 0.05.
![Check Mark](/static/check-mark.png)
The value of
Explanation of Solution
Given:
The linear differential equation is
Concept used:
Runga-Kutta method:
The solution of a linear differential equation of the form
Euler’s method
The approximated solution for the first order linear differential equation of the form
Improved Euler’s method:
As per the Improved Euler’s method the solution of a linear differential equation of the form
Calculation:
The linear differential equation is given as follows:
The value of step size is given as
The initial value is given as
The given differential equation is of the form
This implies that
Obtain the solution of the given differential equation by Euler’s method for
As per the Euler’s method the solution of a linear differential equation of the form
Substitute
Substitute the value of
Therefore, the value of
Similarly, use the above procedure and the value of
|
| |
Table
Table
Obtain the solution of the given differential equation by Improved Euler’s method for
As per the Improved Euler’s method the solution of a linear differential equation of the form
Substitute
Substitute the value of
Substitute
Substitute the value of
Therefore, the value of
Similarly, with above procedure used the value of
|
| |
Table
Table
Obtain the solution of the given differential equation by Euler’s modified method for
As per the Runga-Kutta method of fourth order the value of
Here, the value of
Substitute
Calculate the value of
Calculate the value of
Further solve the above equation.
Calculate the value of
Calculate the value of
Substitute the value of
Therefore, the value of
Similarly, with above procedure used the value of
|
| |
Table
Table
The table which shows a comparison between the values of
|
|
|
|
|
| |
Table
Thus, table
Want to see more full solutions like this?
Chapter 9 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
- 4. Use method of separation of variable to solve the following wave equation მłu J²u subject to u(0,t) =0, for t> 0, u(л,t) = 0, for t> 0, = t> 0, at² ax²' u(x, 0) = 0, 0.01 x, ut(x, 0) = Π 0.01 (π-x), 0arrow_forwardYou buy a house for $210000, and take out a 30-year mortgage at 7% interest. For simplicity, assume that interest compounds continuously. A) What will be your annual mortgage payment? $ per year B) Suppose that regular raises at your job allow you to increase your annual payment by 6% each year. For simplicity, assume this is a nominal rate, and your payment amount increases continuously. How long will it take to pay off the mortgage? yearsarrow_forwardPlease help me answer this question!. Please handwrite it. I don't require AI answers. Thanks for your time!.arrow_forwardSolve the following heat equation by method of separation variables: ди = at subject to u(0,t) =0, for -16024 ძx2 • t>0, 0 0, ux (4,t) = 0, for t> 0, u(x, 0) = (x-3, \-1, 0 < x ≤2 2≤ x ≤ 4.arrow_forwardYour employer automatically puts 5 percent of your salary into a 401(k) retirement account each year. The account earns 8% interest. Suppose you just got the job, your starting salary is $40000, and you expect to receive a 2% raise each year. For simplicity, assume that interest earned and your raises are given as nominal rates and compound continuously. Find the value of your retirement account after 30 years Value = $arrow_forwardex 5. important aspects. Graph f(x)=lnx. Be sure to make your graph big enough to easily read (use the space given.) Label all 6 33arrow_forwardSuppose that a room containing 1300 cubic feet of air is originally free of carbon monoxide (CO). Beginning at time t = 0, cigarette smoke containing 4% CO is introduced into the room at a rate of 0.8 cubic feet per minute. The well-circulated smoke and air mixture is allowed to leave the room at the same rate. Let A(t) represent the amount of CO in the room (in cubic feet) after t minutes. (A) Write the DE model for the time rate of change of CO in the room. Also state the initial condition. dA dt A(0) (B) Solve the IVP to find the amount of CO in the room at any time t > 0. A(t) (C) Extended exposure to a CO concentration as low as 0.00012 is harmful to the human body. Find the time at which this concentration is reached. t= minutesarrow_forwardNewton's Law of Cooling tells us that the rate of change of the temperature of an object is proportional to the temperature difference between the object and its surroundings. This can be modeled by the differential equation dT dt k(TA), where T is the temperature of the object after t units of time have passed, A is the ambient temperature of the object's surroundings, and k is a constant of proportionality. Suppose that a cup of coffee begins at 178 degrees and, after sitting in room temperature of 61 degrees for 12 minutes, the coffee reaches 171 degrees. How long will it take before the coffee reaches 155 degrees? Include at least 2 decimal places in your answer. minutesarrow_forwardDecide whether each limit exists. If a limit exists, estimate its value. 11. (a) lim f(x) x-3 f(x) ↑ 4 3- 2+ (b) lim f(x) x―0 -2 0 X 1234arrow_forwardcan you help me solve this question and show workings pleasearrow_forwardhow could the bar graph have been organized differently to make it easier to compare opinion changes within political partiesarrow_forwardketch a graph of the function f(x) = 3 cos (표) 6. x +1 5 4 3 3 80 9 2+ 1 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 -1 -2 -3+ -4 5 -6+ Clear All Draw: пи > Next Questionarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259676512/9781259676512_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134392790/9780134392790_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168024/9781938168024_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683713/9780134683713_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337694193/9781337694193_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259985607/9781259985607_smallCoverImage.gif)