Interpretation: The order of elution of a mixture of triphenylmethanol, biphenyl, benzoic acid, and methyl benzoate from an alumina column should be predicted.
Concept introduction: A separation technique used for the segregation of components of chemical mixture based on the difference between the adsorption of different components in stationary and mobile phase is called column chromatography.
It is used for purification or segregation of compounds. It consists of two phases namely:
1. Stationary phase (solid)
2. Mobile phase (generally liquid)
Silica gel is commonly used as the stationary phase.
Elution is the process of extraction of one component from another with the help of the solvent. Eluent is the carrier part of mobile phase. Eluate is the material that comes up through the chromatogram.
Answer to Problem 1Q
The order of elution of the compounds in the given mixture is,
Explanation of Solution
The structures of the given compounds are as follows:
Triphenylmethanol has
The order of polarity of the given compounds is as follows:
Biphenyl is the least polar and therefore it is eluted first, followed by methyl benzoate, triphenylmethanol, and benzoic acid.
So the order of elution of the mixture of the given compounds is as follows:
Want to see more full solutions like this?
Chapter 9 Solutions
Macroscale and Microscale Organic Experiments
- the vibrational frequency of I2 is 214.5 cm-1. (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K. (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2. (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardconsider a weak monoprotic acid that is 32 deprotonated at ph 4.00 what is the pka of the weak acidarrow_forward
- How much energy does it take to raise the temperature of 1.0 mol H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational and rotational contributions to the heat capacity. Hint: Use high-temp limit for non-linear molecule when calculating rotational contribution.arrow_forwardwhat was the pH of gastric juice obtained 5.0ml sample of gastric juice taken from a patient several hours after a meal and titrated the juice with 0,2M NaOH t neutrality the neutralization of gastric HCL required 5.0ml NaOH what was the pH of gastric juice?arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- 2. Freckles (F) are dominant to no freckles (f). A heterozygous mother ( father ( have a baby. F = freckles, f= no freckles Genotype Phenotype Possibility 1: Possibility 2: Possibility 3: Possibility 4: and heterozygousarrow_forwardDon't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- the rotational constant of HI is 6.511 cm-1. (i)What is the characteristic rotational temperature of HI? (ii) Evaluate the rotational partition function and the mean rotational energy of HI at 298K. Note that T=298K is much larger than the characteristic rotational temperature of HI.arrow_forward3. The ability to roll your tongue (R) is a dominant trait. A woman who cannot roll her tongue ( ) has a baby with a man who is homozygous dominant for this trait ( R = can roll tongue, r = cannot roll tongue ). Possibility 1: Possibility 2: Possibility 3: Possibility 4: Genotype Phenotypearrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Macroscale and Microscale Organic ExperimentsChemistryISBN:9781305577190Author:Kenneth L. Williamson, Katherine M. MastersPublisher:Brooks ColePrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- EBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENT