SUSTAINABLE ENERGY (LL)
SUSTAINABLE ENERGY (LL)
2nd Edition
ISBN: 9780357667224
Author: DUNLAP
Publisher: CENGAGE L
Question
100%
Book Icon
Chapter 9, Problem 1P
To determine

Find the time required to increase the oil temperature from 20°C to 100°C.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The time required to increase the oil temperature from 20°C to 100°C is 14.7sec¯.

Explanation of Solution

Given information:

The width of the parabolic trough l is 1.0m.

The insider diameter of the pipe d is 1cm.

Initial temperature T1 is 20°C  and the final temperature T2 is 100°C.

Calculation:

Take the mid day irradiance of incident radiation as 674W/m2 and incident power of the 1 m long parabolic trough P as 674 W.

The inside diameter of the pipe is 1 cm.

Find the volume of oil in a 1 m pipe section V.

V=π4d2×l=π41cm2×1m=π41cm×102m1cm2×1m=7.85×105m3

Take the density of oil ρ as 900kg/m3 and the value of specific heat C as 1,758J/kg°C.

Express the formula for energy Q as follows:

Q=mCΔT                                                                                                                   …... (1)

Here, the mass is m and the change in temperature is ΔT.

Write the expression for power P as follows:

P=QtQ=Pt

Here, t is the time required to raise the oil temperature.

The mass is the product of density and the volume. Therefore, m=ρV.

Substitute Pt for Q and ρV for m in equation (1).

Pt=ρVCΔTt=ρVCT2T1Pt=900kg/m3×7.85×105m3×1,758J/kg°C×100°C20°C674W

t=14.7sec

Therefore, the time required to raise the oil temperature is 14.7sec¯.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Find moments of inertia around horizontal and vertical centroid axes for given 6 cross sections. 1) 30cm 5cm 10cm 20cm 2) 3)
An anchored sheet-pile bulkhead is shown in the figure below. Let L₁ = 2 m. L₂ =6 m. l₁ = 1 m = 17 kN/m². sat -18.86 kN/m², '=32°, and c=27 kN/m². Use the free earth support method. Anchor Sand = 0 Water table L Sand Ysat c' = 0 Clay = 0 1. Determine the theoretical depth of embedment, D. (Enter your answer to three significant figures.) D= m 2. Calculate the anchor force per unit length of the sheet-pile wall. (Enter your answer to three significant figures.) F= kN/m
Calculate the dry mass of activated sludge (✗a) produced in wastewater treatment system where the flow rate is 7,500 m³/day, the BOD concentration in the primary effluent (i.e., the BOD concentration in the wastewater going to the aeration basin) is 75 mg/L, the soluble BOD concentration in the liquid effluent of the secondary clarifier is 10 mg/L, and the system is operating with an SRT of 3 days. Assume true yield is 0.5 g VSS per g BOD and the decay rate (i.e., bч or kd) is equal to 0.1 days 1. Assume the system does not achieve nitrification and that the mass of cell debris, nonbiodegradable VSS, and influent inert TSS is negigible. Express your answer in kg/day and round to the nearest 0.1.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning