Fundamentals of Physics, Volume 1, Chapter 1-20
10th Edition
ISBN: 9781118233764
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 1P
A 2.00 kg particle has the xy coordinates (−1.20 m, 0.500 m), and a 4.00 kg particle has the xy coordinates (0.600 m, −0.750 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates (−0.500 m, −0.700 m)?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.29 kg particle has the xy coordinates (-1.25 m, 0.116 m), and a 5.32 kg particle has the xy coordinates (0.300 m, -0.345 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 2.97 kg particle such that the center of mass of the three-particle system has the coordinates (-0.308 m, -0.473 m)?
A 1.34 kg particle has the xy coordinates (-1.54 m, 0.660 m), and a 2.30 kg particle has the xy coordinates (0.896 m,-0.181 m). Both lie
on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.87 kg particle such that the center of mass of the three-
particle system has the coordinates (-0.571 m, -0.415 m)?
(a) Number i
(b) Number
Units
Units
A 3.28 kg particle has the xy coordinates (-1.46 m, 0.885 m), and a 2.47 kg particle has the xy coordinates (0.415 m, -0.347 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.79 kg particle such that the center of mass of
the three-particle system has the coordinates (-0.689 m, -0.872 m)?
(a) Number
Units
(b) Number
Units
Chapter 9 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Ch. 9 - Figure 9-23 shows an overhead view of three...Ch. 9 - Figure 9-24 shows an overhead view of four...Ch. 9 - Consider a box that explodes into two pieces while...Ch. 9 - Figure 9-26 shows graphs of force magnitude versus...Ch. 9 - The free-body diagrams in Fig. 9-27 give, from...Ch. 9 - Figure 9-28 shows four groups of three or four...Ch. 9 - A block slides along a frictionless floor and into...Ch. 9 - Figure 9-30 shows a snapshot of block 1 as it...Ch. 9 - Two bodies have undergone an elastic...Ch. 9 - Figure 9-32: A block on a horizontal floor is...
Ch. 9 - Block 1 with mass m1 slides along an x axis across...Ch. 9 - Figure 9-34 shows four graphs of position versus...Ch. 9 - A 2.00 kg particle has the xy coordinates 1.20 m,...Ch. 9 - Figure 9-35 shows a three-particle system, with...Ch. 9 - Figure 9-36 shows a slab with dimensions d1 = 11.0...Ch. 9 - In Fig. 9-37, three uniform thin rods, each of...Ch. 9 - GO What are a the x coordinate and b the y...Ch. 9 - Figure 9-39 shows a cubical box that has been...Ch. 9 - ILW In the ammonia NH3 molecule of Fig. 9-40,...Ch. 9 - GO A uniform soda can of mass 0.140 kg is 12.0 cm...Ch. 9 - ILW A stone is dropped at t = 0. A second stone,...Ch. 9 - GO A 1000 kg automobile is at rest at a traffic...Ch. 9 - A big olive m = 0.50 kg lies at the origin of an...Ch. 9 - Prob. 12PCh. 9 - SSM A shell is shot with an initial velocity v0 of...Ch. 9 - In Figure 9-43, two particles are launched from...Ch. 9 - Figure 9-44 shows an arrangement with an air...Ch. 9 - GO Ricardo, of mass 80 kg, and Carmelita, who is...Ch. 9 - GO In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg...Ch. 9 - A 0.70 kg ball moving horizontally at 5.0 m/s...Ch. 9 - ILW A 2100 kg truck traveling north at 41 km/h...Ch. 9 - GO At time t = 0, a ball is struck at ground level...Ch. 9 - A 0.30 kg softball has a velocity of 15 m/s at an...Ch. 9 - Figure 9-47 gives an overhead view of the path...Ch. 9 - Until his seventies, Henri LaMothe Fig. 9-48...Ch. 9 - In February 1955, a paratrooper fell 370 m from an...Ch. 9 - A 1.2 kg ball drops vertically onto a floor,...Ch. 9 - In a common but dangerous prank, a chair is pulled...Ch. 9 - SSM A force in the negative direction of an x axis...Ch. 9 - In tae-kwon-do, a hand is slammed down onto a...Ch. 9 - Suppose a gangster sprays Supermans chest with 3 g...Ch. 9 - Two average forces. A steady stream of 0.250 kg...Ch. 9 - Jumping up before the elevator hits. After the...Ch. 9 - A 5.0 kg toy car can move along an x axis; Fig....Ch. 9 - GO Figure 9-51 shows a 0.300 kg baseball just...Ch. 9 - Basilisk lizards can run across the top of a water...Ch. 9 - GO Figure 9-53 shows an approximate plot of force...Ch. 9 - A 0.25 kg puck is initially stationary on an ice...Ch. 9 - SSM A soccer player kicks a soccer ball of mass...Ch. 9 - In the overhead view of Fig. 9-54, a 300 g ball...Ch. 9 - SSM A 91 kg man lying on a surface of negligible...Ch. 9 - A space vehicle is traveling at 4300 km/h relative...Ch. 9 - Figure 9-55 shows a two-ended rocket that is...Ch. 9 - An object, with mass m and speed v relative to an...Ch. 9 - In the Olympiad of 708 B.C., some athletes...Ch. 9 - Prob. 44PCh. 9 - SSM WWW A 20.0 kg body is moving through space in...Ch. 9 - A 4.0 kg mess kit sliding on a frictionless...Ch. 9 - A vessel at rest at the origin of an xy coordinate...Ch. 9 - GO Particle A and particle B are held together...Ch. 9 - A bullet of mass 10 g strikes a ballistic pendulum...Ch. 9 - A 5.20 g bullet moving at 672 m/s strikes a 700 g...Ch. 9 - GO In Fig. 9-58, a 3.50 g bullet is fired...Ch. 9 - GO In Fig. 9-59, a 10 g bullet moving directly...Ch. 9 - Prob. 53PCh. 9 - A completely inelastic collision occurs between...Ch. 9 - ILW A 5.0 kg block with a speed of 3.0 m/s...Ch. 9 - In the before part of Fig. 9-60, car A mass 1100...Ch. 9 - Prob. 57PCh. 9 - In Fig. 9-62, block 2 mass 1.0 kg is at rest on a...Ch. 9 - ILW In Fig. 9-63, block 1 mass 2.0 kg is moving...Ch. 9 - Module 9-7 Elastic Collisions in One Dimension In...Ch. 9 - SSM A cart with mass 340 g moving on a...Ch. 9 - Two titanium spheres approach each other head-on...Ch. 9 - Block 1 of mass m1 slides along a frictionless...Ch. 9 - GO A steel ball of mass 0.500 kg is fastened to a...Ch. 9 - SSM A body of mass 2.0 kg makes an elastic...Ch. 9 - Block 1, with mass m1 and speed 4.0 m/s, slides...Ch. 9 - In Fig. 9-66, particle 1 of mass m1 = 0.30 kg...Ch. 9 - GO In Fig. 9-67, block 1 of mass m1 slides from...Ch. 9 - GO A small ball of mass m is aligned above a...Ch. 9 - GO In Fig. 9-69, puck 1 of mass m1 = 0.20 kg is...Ch. 9 - ILW In Fig. 9-21, projectile particle 1 is an...Ch. 9 - Ball B, moving in the positive direction of an x...Ch. 9 - After a completely inelastic collision, two...Ch. 9 - Two 2.0 kg bodies, A and B, collide. The...Ch. 9 - GO A projectile proton with a speed of 500 m/s...Ch. 9 - A 6090 kg space probe moving nose-first toward...Ch. 9 - SSM In Fig. 9-70, two long barges are moving in...Ch. 9 - Prob. 78PCh. 9 - SSM ILW A rocket that is in deep space and...Ch. 9 - An object is tracked by a radar station and...Ch. 9 - The last stage of a rocket, which is traveling at...Ch. 9 - Pancake collapse of a tall building. In the...Ch. 9 - Prob. 83PCh. 9 - Figure 9-73 shows an overhead view of two...Ch. 9 - Speed deamplifier. In Fig. 9-74, block 1 of mass...Ch. 9 - Speed amplifier. In Fig. 9-75, block 1 of mass m1...Ch. 9 - A ball having a mass of 150 g strikes a wall with...Ch. 9 - A spacecraft is separated into two parts by...Ch. 9 - SSM A 1400 kg car moving at 5.3 m/s is initially...Ch. 9 - ILW A certain radioactive parent nucleus...Ch. 9 - A 75 kg man rides on a 39 kg cart moving at a...Ch. 9 - Two blocks of masses 1.0 kg and 3.0 kg are...Ch. 9 - Prob. 93PCh. 9 - An old Chrysler with mass 2400 kg is moving along...Ch. 9 - SSM In the arrangement of Fig. 9-21, billiard ball...Ch. 9 - A rocket is moving away from the solar system at a...Ch. 9 - The three balls in the overhead view of Fig. 9-76...Ch. 9 - A 0.15 kg ball hits a wall with a velocity of 5.00...Ch. 9 - Prob. 99PCh. 9 - In a game of pool, the cue ball strikes another...Ch. 9 - Prob. 101PCh. 9 - In Fig. 9-79, an 80 kg man is on a ladder hanging...Ch. 9 - In Fig. 9 80, block 1 of mass m1 = 6.6 kg is at...Ch. 9 - Prob. 104PCh. 9 - SSM A 3.0 kg object moving at 8.0 m/s in the...Ch. 9 - A 2140 kg railroad flatcar, which can move with...Ch. 9 - SSM A 6100 kg rocket is set for vertical firing...Ch. 9 - A 500.0 kg module is attached to a 400.0 kg...Ch. 9 - SSM a How far is the center of mass of the...Ch. 9 - A 140 g ball with speed 7.8 m/s strikes a wall...Ch. 9 - SSM A rocket sled with a mass of 2900 kg moves at...Ch. 9 - SSM A pellet gun fires ten 2.0 g pellets per...Ch. 9 - A railroad car moves under a grain elevator at a...Ch. 9 - Figure 9-82 shows a uniform square plate of edge...Ch. 9 - SSM At time t = 0, force F1=(4.00i+5.00j) N acts...Ch. 9 - Two particles P and Q are released from rest 1.0 m...Ch. 9 - A collision occurs between a 2.00 kg particle...Ch. 9 - In the two-sphere arrangement of Fig. 9-20, assume...Ch. 9 - In Fig. 9-83, block 1 slides along an x axis on a...Ch. 9 - A body is traveling at 2.0 m/s along the positive...Ch. 9 - An electron undergoes a one-dimensional elastic...Ch. 9 - Prob. 122PCh. 9 - An unmanned space probe of mass m and speed v...Ch. 9 - A 0.550 kg ball falls directly down onto concrete,...Ch. 9 - An atomic nucleus at rest at the origin of an xy...Ch. 9 - Particle 1 of mass 200 g and speed 3.00 m/s...Ch. 9 - During a lunar mission, it is necessary to...Ch. 9 - A cue stick strikes a stationary pool ball, with...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. The Na+ / glucose symport transports glucose from the lumen of the small intestine into cells lining the lu...
Biochemistry: Concepts and Connections (2nd Edition)
41. A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero ord...
Chemistry: Structure and Properties (2nd Edition)
Choose the best answer to etch of the following. Explain your reasoning. Which of these layers of the sun is co...
Cosmic Perspective Fundamentals
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
18. A 1.0 kg block is attached to a spring with spring constant 16 N/m. While the block is sitting at rest, a s...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forwardA water molecule consists of an oxygen atom with two hydrogen atoms bound to it (Fig. P8.36). The angle between the two bonds is 106. If the bonds are 0.100 nm long, where is the center of mass of the molecule? Figure P8.36arrow_forwardTwo metersticks are connected at their ends as shown in Figure P10.18. The center of mass of each individual meterstick is at its midpoint, and the mass of each meterstick is m. a. Where is the center of mass of the two-stick system as depicted in the figure, with the origin located at the intersection of the sticks? b. Can the two-stick system be balanced on the end of your finger so that it remains lying flat in front of you in the orientation shown? Why or why not? FIGURE P10.18 (a) The center of mass of the stick on the x axis would be at (0.5 m, 0), and the center of mass of the stick on the stick on the y axis be at (0, 0.5 m), assuming the sticks are uniform. We can then use Equation 10.3 to find the x and y coordinates of the center of mass. xCM=1Mj=1nmjxj=12m[m(0.50m)]=0.25myCM=1Mj=1nmjyj=12m[m(0.50m)]=0.25m The location of the center of mass is (0.25m,0.25m) (b) No. The location of the center of mass is not located on the object, so your finger would not be in contact with the object. In a different orientation, balancing by applying a force at the center of mass might be possible, but not in the orientation shown.arrow_forward
- A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forwardA 2.50 kg particle has the xy coordinates (-1.20 m, 0.500 m) and a 5.50 kg particle has the xy coordinates (0.600 m, -0.750 m). Both lie on a horizontal plane. At what x and y coordinates must you place a 2.50 kg particle such that the center of mass of the three-particle system has the coordinates (-0.500 m, -0.700 m)? (a) x coordinate (b) y coordinatearrow_forwardA 4.30 kg particle has the xy coordinates (-1.39 m, 0.366 m), and a 2.68 kg particle has the xy coordinates (0.733 m, -0.487 m). Both Ilie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.88 kg particle such that the center of mass of the three- particle system has the coordinates (-0.680 m, -0.256 m)? (a) Number i Units (b) Number Unitsarrow_forward
- Please Help!arrow_forwardThe center of mass (or center of gravity) of a two-particle system is at the origin. One particle is located at (3.0 m, 0.0 m) and has a mass of 2.0 kg. The other particle has a mass of 3.0 kg. What is the location of the 3.0-kg particle? O (3.0 m, 0.0 m) O (-3.0 m, 0.0 m) O (2.0 m, 0.0 m) O (-2.0 m, 0.0 m)arrow_forwardA system of three particles with masses m1 = 3.0 kg, m2 = 4.0 kg and m3 = 8.0 kg is placed on a two dimensional xy plane. The scales on the axes are set by x, = 2.0 m and y, = 2.0 m. y (m) mg m1 * (m) Figure 2 (a) Find out the x coordinate of the system's center of mass. (b) Find out the y coordinate of the system's center of mass. (c) Find out the acceleration of the system if an external force of 5 N acts on it.arrow_forward
- The figure shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length L = 71 cm. Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box. (a) Number i (b) Number i (c) Number i Units Units Units x 0 < <arrow_forwardThe figure shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length L = 76 cm. Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box. (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardA system has a 1.5 kg particle at the origin. The other particle has a mass of 2.5 kg and is located 3 m away on the x axis. Where is the center of mass for this system?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY