Concept explainers
SSM A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The foot of the player is in contact with the ball for 3.0 × 10−3 s, and the force of the kick is given by
F(t) = [(6.0 × 106)t − (2.0 × 109)t2] N
for 0 ≤ t ≤ 3.0 × 10¯3 s, where t is in seconds. Find the magnitudes of (a) the impulse on the ball due to the kick, (b) the average force on the ball from the player’s foot during the period of contact, (c) the maximum force on the ball from the player’s foot during the period of contact, and (d) the ball’s velocity immediately after it loses contact with the player’s foot.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Human Anatomy & Physiology (2nd Edition)
Principles of Anatomy and Physiology
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Biochemistry: Concepts and Connections (2nd Edition)
Chemistry: Structure and Properties (2nd Edition)
- A wedge with mass M rests on a frictionless horizontal tabletop. A block with mass m is placed on the wedge and a horizontal force F~ is applied to the wedge. There is no friction between the block and the wedge. For α = π/7, what must the magnitude of F~ be if the block is to remain at a constant height above the tabletop? (g is the magnitude of the gravitational acceleration. Take m = 1 kg, M = 5 kg and g = 10 m/s 2) (a) 29 N (b) 35 N (c) 44 N (d) 60 N (e) 104 Narrow_forwardA freight train consists of two 9.00 ✕ 105 kg engines and 50 cars with average masses of 3.50 ✕ 105 kg. (a) What force (in N) must each engine exert backward on the track to accelerate the train at a rate of 4.00 ✕ 10−2 m/s2 if the force of friction is 7.50 ✕ 105 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently, trains are very energy-efficient transportation systems. (Enter the magnitude.) b) What is the magnitude of the force (in N) in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines? (Assume both engines are at the front of the train.)arrow_forward53. ssm Three forces act on a moving object. One force has a magnitude of 80.0 N and is directed due north. Another has a magnitude of 60.0 N and is directed due west. What must be the magnitude and direction of the third force, such that the object continues to move with a constant velocity?arrow_forward
- Question 8: A horizontal external force F is applied to block of mass 3m so that it moves horizontally as shown in Figure 4. The coefficient of friction force between the block of mass 4m and the ground is 3u while the coefficient of friction force between the blocks is u (g is the gravitational acceleration.). Find the acceleration of block of mass 3m relative to the ground. -> µ 3M 4M 3µ Figure 4 Select one: F - 9µMg 3M F - 3µMg 3M 2F – 18µMg 3M F- 18μMg 6M 2F – 21µMg 6Marrow_forwardTime left 0:20:26 In the figure, a force of magnitude 11.4 N is applied to a block of mass m2= 1.3 kg. The force is directed up an incline plane with an angle of 33.1°. The box is connected by a cord to another block of mass m1= 2.7 kg on the floor. The floor, plane, and pulley are frictionless, and the masses of the pulley and cord are negligible. What is the tension in the cord in N? M2 m1 Answer: ENG f8 4t 144 f3 f4 fs f6 米 & 4. 6. 7 01 00 96 30 %24 %23arrow_forwardA drone is being directed across a frictionless ice covered lake. The mass of the drone is 1.50 kg, and its velocity is 3.00i ^ m/s . After 10.0 s, the velocity is 9.00i ^ + 4.00j ^ m/s . If a constant force in the horizontal direction is causing this change in motion, find (a) the components of the force and (b) the magnitude of the force.arrow_forward
- Answer must be in scientific notation with SI units that do not have prefixes except for kg. (m/s NOT cm/s). Answer must be in Standard Form Scientific Notationarrow_forwardChapter 05, Problem 010 GO A 0.180 kg particle moves along an x axis according to x(t) = - 14.0 + 2.00 t + 4.00 2- 5.00 t, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.30 s ? Give an expression for the (a) x, (b) y and (c) z components. (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Work Question Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER powered by MapleNet ere to search 1:51 PM ENG 4/4/2021 ASUS 19home prt sc pause break delete f10 end f1Pgup f12Pgdn insert & 21 4. 8 backspo-arrow_forwardA block of mass 8.3 kg is initially at rest on a horizontal plane. The coefficients of kinetic and static friction between the plane and the block are respectivelyμc= 0.25 and μe= 0.36. Consider g = 10 m/s2 A horizontal force of magnitude F = 26.3 N is then applied to the block. In this situation, calculate the magnitude of the friction force (in N, to one decimal place).arrow_forward
- The figure shows a container of mass m₁ = 1.7 kg connected to a block of mass m₂ by a cord looped around a frictionless pulley. The cord and pulley have negligible mass. When the container is released from rest, it accelerates at 1.0 m/s² across the horizontal frictionless surface. What are (a) the tension in the cord and (b) mass m₂? (a) Number (b) Number i Units Units m₁ mq >arrow_forwardA 0.35 kg particle moves in an xy plane according to x(t) = - 17 + 1 t - 5 t3 and y(t) = 18 + 5 t - 10 t2, with x and y in meters and t in seconds. At t = 1.5 s, what are (a) the magnitude and (b) the angle (within (-180°, 180°] interval relative to the positive direction of the xaxis) of the net force on the particle, and (c) what is the angle of the particle's direction of travel?arrow_forwardA mysterious force acts on all particles along a particular line and always points towards a particular point P on the line. The magnitude of the force on a particle increases as the cube of the distance from that point, that is, F∝ r3, if the distance from the P to the position of the particle is r. It has been determined that the constant of proportionality is 0.23 N/m3, i.e. the magnitude of the force on a particle can be written as 0.23r3, when the particle is at a distance r from the force center. Find the magnitude of the potential energy, in joules, of a particle subjected to this force when the particle is at a distance 0.21 m from point P assuming the potential energy to be zero when the particle is at P. PE= ?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON