EBK FLUID MECHANICS
EBK FLUID MECHANICS
2nd Edition
ISBN: 9780134626055
Author: HIBBELER
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 1P
To determine

The average velocity of the water.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The pressure drop (dpdx) is 100 Pa.

The temperature of the water (T) is 20°C.

Calculation:

Consider the flow is laminar.

Since the plates are fixed, dhdx=0.

Refer Appendix A, “Physical Properties of Water vs. Temperature (SI Units)” at 20°C,

The density of the water (ρ) is 998.3 kg/m3.

The dynamic viscosity of water (μ) is 1.00×103 Ns/m2.

Calculate the average velocity.

  V=a212μdpdx=(4m)212[1.00(103)Ns/m2](100 Pa0.9m)=(4m×1 m1000 mm)212[1.00(103)Ns/m2](100 Pa× 1N/m2Pa0.9m)=0.148 m/s

Thus, the average velocity is 0.148 m/s_.

Checks the assumption by calculate the Reynolds number.

  Re==ρVaμ=(998.3kg/m3)(0.1481m/s)(0.004m)1.00(103)Ns/m2=592<1400

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
9₁ A Insulated boundary Insulated boundary dx Let's begin with the strong form for a steady-state one-dimensional heat conduction problem, without convection. d dT + Q = dx dx According to Fourier's law of heat conduction, the heat flux q(x), is dT q(x)=-k dx. x Q is the internal heat source, which heat is generated per unit time per unit volume. q(x) and q(x + dx) are the heat flux conducted into the control volume at x and x + dx, respectively. k is thermal conductivity along the x direction, A is the cross-section area perpendicular to heat flux q(x). T is the temperature, and is the temperature gradient. dT dx 1. Derive the weak form using w(x) as the weight function. 2. Consider the following scenario: a 1D block is 3 m long (L = 3 m), with constant cross-section area A = 1 m². The left free surface of the block (x = 0) is maintained at a constant temperature of 200 °C, and the right surface (x = L = 3m) is insulated. Recall that Neumann boundary conditions are naturally satisfied…
1 - Clearly identify the system and its mass and energy exchanges between each system and its surroundings by drawing a box to represent the system boundary, and showing the exchanges by input and output arrows. You may want to search and check the systems on the Internet in case you are not familiar with their operations. A pot with boiling water on a gas stove A domestic electric water heater A motor cycle driven on the roadfrom thermodynamics  You just need to draw and put arrows on the first part a b and c
7. A distributed load w(x) = 4x1/3 acts on the beam AB shown in Figure 7, where x is measured in meters and w is in kN/m. The length of the beam is L = 4 m. Find the moment of the resultant force about the point B. w(x) per unit length L Figure 7 B
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license