PHYSICS LABORATORY EXPERIMENTS >CUSTOM<
PHYSICS LABORATORY EXPERIMENTS >CUSTOM<
8th Edition
ISBN: 9781305751217
Author: Wilson
Publisher: CENGAGE C
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 1EP

In terms of the variables given in GL Fig. 9.1, what is the momentum of the system immediately after the mass m becomes embedded in the pendulum bob?

Expert Solution & Answer
Check Mark
To determine

The momentum of the system immediately after the mass m becomes embedded in the pendulum bob.

Answer to Problem 1EP

The momentum of the system immediately after the mass m becomes embedded in the pendulum bob is pafter=(m+M)V.

Explanation of Solution

In the ballistic pendulum arrangement shown in GL Figure 9.1, a projectile of mass m is fired with velocity vx0 hits and gets embedded in the bob of the pendulum which has a mass M. Before the collision, the momentum of the system will be pbefore=mvx0. The combined system has a velocity V immediately after collision. After collision, the system executes oscillatory motion.

Immediately after the collision, the momentum of the system can be computed by taking the product of the combined mass and the velocity with which it start moving. The combined mass of the system will be m+M. Thus, the momentum of the system immediately after the mass m becomes embedded in the pendulum bob will be pafter=(m+M)V.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
Three point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.
The drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY