Concept explainers
What can you say about the velocity of a moving body that in dynamic equilibrium? Draw a sketch of such a body using clearly labeled arrows to represent all external forces on the body.
The velocity of a moving body that is dynamic equilibrium and sketch a diagram of such a body.
Answer to Problem 1CQ
The velocity of a body in dynamic equilibrium is a constant, both in magnitude and direction.
Explanation of Solution
Introduction:
A body is said to be in equilibrium if the total force on the body is zero. On this basis, there are two kinds of equilibria- static equilibrium and dynamic equilibrium. According to Newton's first law, a body continues to be in the state of rest or in the state of uniform motion in a straight line, unless acted upon by an external unbalanced force. Further, Newton's second law implies that an unbalanced force produces an acceleration.
The sum of the forces acting on a body which is in dynamic equilibrium is zero. Therefore, the body experiences no acceleration. As a result, its velocity does not change. Thus, the body which is in dynamic equilibrium moves with a constant velocity.
Consider a block of weight W, acted upon by a force F. The block is placed on a horizontal surface. The surface exerts an upward force FNcalled the normal force on the block. A force of friction f acts between the surface and the block. The block moves towards the right with a velocity v.
The forces W and FNare equal and opposite. Thus, the sum of the forces along the vertical direction is zero. If the applied force F and the force of friction f have equal magnitudes but they are directed opposite to each other. Thus, the net force along the horizontal is also equal to zero. The sum of the forces acting on the block, being zero, the block is not accelerated. Thus, the velocity of the block remains constant. It continues to move with the same speed v and in the same direction.
A diagram representing the forces is shown below.
Conclusion:
A moving body under dynamic equilibrium moves with a constant velocity.
Want to see more full solutions like this?
Chapter 9 Solutions
COLLEGE PHYSICS
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology (7th Edition)
College Physics: A Strategic Approach (3rd Edition)
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON