Bundle: Foundations of Astronomy, Enhanced, 13th + LMS Integrated MindTap Astronomy, 2 terms (12 months) Printed Access Card
Bundle: Foundations of Astronomy, Enhanced, 13th + LMS Integrated MindTap Astronomy, 2 terms (12 months) Printed Access Card
13th Edition
ISBN: 9781337368360
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 18P
To determine

The circumferences of the two orbits, the separation between the stars, the total mass of the system and the individual mass of each star.

Expert Solution & Answer
Check Mark

Answer to Problem 18P

The circumferences of the two orbits are 2.84AU and 1.42AU. The separation between the stars is 0.678 AU. The total mass of the system is 40.6 solar mass. The individual masses of each star are  13.5 solar mass and 27.1solar mass.

Explanation of Solution

Write the equation for the circumference of first orbit.

C1=v1T        (I)

Here, C1 is the circumference of first star. v1 is the speed of first star and T is the orbital period.

Write the equation for the circumference of second orbit.

C2=v2T        (II)

Here, C2 is the circumference of second star, v2 is the speed of second star and T is the orbital period.

Write the expression for the separation between two stars.

r=v1+v2ω        (III)

Here, r is the separation between two stars and ω is the angular speed.

Write the expression for the angular speed.

ω=2πT        (IV)

Rewrite the expression for the separation between the stars.

r=v1+v2(2π/T)        (V)

Write the expression for the distance of first star by using equation (IV).

r1=v1ω=v1(2π/T)        (VI)

Here, r1 is the distance of first star.

Write the expression for the distance of second star by using equation (IV).

r2=v2ω=v2(2π/T)        (VII)

Here, r2 is the distance of second star.

Write the equation for the total mass of a visual binary system by using (V).

M=r3T2        (VIII)

Here, M is the total mass.

Write the expression for the total mass of the system.

M=MA+MB        (IX)

Here, MA is the mass of first star and MB is the second star.

Write the expression for the center of mass by using equation (VI) and (VII).

xcm=MAr1MBr2MA+MB=MA(v1(2π/T))MB(v2(2π/T))MA+MB        (X)

Here, xcm is the center of mass.

Conclusion:

Substitute, 154km/s for v1, 32days for T in equation (I) to find C1.

C1=[(154km/s)(1×103m1km)][(32days)(24hrs1day)(3600s1hr)]=(4.26×1011m)(6.68459×1012AU1m)2.84AU

Substitute, 77km/s for v1, 32days for T in equation (II) to find C2.

C2=[(77km/s)(1×103m1km)][(32days)(24hrs1day)(3600s1hr)]=(2.13×1011m)(6.68459×1012AU1m)=1.42AU

Substitute, 154km/s for v1, 77km/s for v2, 32days for T in equation (V) to find r.

r=[(154km/s)(1×103m1km)]+[(77km/s)(1×103m1km)](2π/[(32days)(24hrs1day)(3600s1hr)])=(1.01×1011m)(6.68459×1012AU1m)=0.678AU

Substitute, 0.678AU for r, 32days for T in equation (VIII) to find M.

M=(0.678AU)3[(32days)(0.00273973year1days)]2=40.6 solar mass

Substitute, 154km/s for v1, 32days for T in equation (IX) to find MA.

MA=[(154km/s)(0.210805AU/yr1km/s)]3[(32days)(0.00273973year1day)](2π)3=12.1

Substitute, 0 for xcm, 154km/s for v1, 77km/s for v2 in equation (X) to find relation between MA,MB.

0=MA(v1(2π/T))MB(v2(2π/T))MA+MBMAv1MBv2=0MA[(154km/s)(0.210805AU/yr1km/s)]MB[(77km/s)(0.210805AU/yr1km/s)]=032.46MA16.23MB=0        (XI)

Substitute, 40.6 solar mass for M in equation (IX) to find relation between MA,MB.

  MA+MB=40.6 solar mass        (XII)

Solving equation (XI) and (XII), value of the individual masses of star.

MA=13.5 solar mass , MB=27.1 solar mass

Thus, the circumferences of the two orbits are 2.84AU and 1.42AU. The separation between the stars is 0.678 AU. The total mass of the system is 40.6 solar mass. The individual masses of each star are  13.5 solar mass and 27.1solar mass.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…
(1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…
The figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +y
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning