Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)
7th Edition
ISBN: 9780137679065
Author: Douglas Giancoli
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 17P
Three children are trying to balance on a seesaw, which includes a fulcrum rock acting as a pivot at the center, and a very light board 3.2 m long (Fig. 9-57).Two playmates are already on either end. Boy A has a mass of 45 kg, and boy B a mass of 35 kg. Where should girl C, whose mass is 25 kg, place herself so as to balance the seesaw?
Figure 9-57
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 4
What is the resultant of the force system acting on the
connection shown?
25
F₁ = 80 lbs
IK
65°
F2 = 60 lbs
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
STRUCTURES I
Homework #1: Force Systems
Name:
TA:
PROBLEM 1
Determine the horizontal and vertical components of
the force in the cable shown.
PROBLEM 2
The horizontal component of force F is 30 lb. What is the
magnitude of force F?
6
10
4
4
F = 600lbs
F = ?
Chapter 9 Solutions
Physics: Principles and Applications -- Pearson e Text Instant Access (Pearson+)
Ch. 9 - Prob. 1OQCh. 9 - Describe several situations in which an object is...Ch. 9 - Prob. 2QCh. 9 - You can find the center of gravity of a meter...Ch. 9 - Prob. 4QCh. 9 - A ground retaining wall is shown in Fig. 9-36a...Ch. 9 - Can the sum of the torques on an object be zero...Ch. 9 - A ladder, leaning against a wall, makes a 60°...Ch. 9 - A uniform meter stick supported at the 25-cm mark...Ch. 9 - Why do you tend to lean backward when carrying a...
Ch. 9 - Figure 9-38 shows a cone. Explain how to lay it on...Ch. 9 - Prob. 11QCh. 9 - Why is it not possible to sit upright in a chair...Ch. 9 - Why is it more difficult to do sit-ups when your...Ch. 9 - Explain why touching your toes while you are...Ch. 9 - Prob. 15QCh. 9 - Name the type of equilibrium for each position of...Ch. 9 - (
17.
)
Is the Young's modulus for a bungee cord...Ch. 9 - Prob. 18QCh. 9 - Prob. 19QCh. 9 - A 60-kg woman stands on the very end of a uniform...Ch. 9 - Prob. 2MCQCh. 9 - Prob. 3MCQCh. 9 - Prob. 4MCQCh. 9 - Two children are balanced on opposite sides of a...Ch. 9 - Prob. 6MCQCh. 9 - Prob. 7MCQCh. 9 - Prob. 8MCQCh. 9 - Prob. 9MCQCh. 9 - Prob. 10MCQCh. 9 - Three forces are applied to a tree sapling, as...Ch. 9 - Prob. 2PCh. 9 - 3(I) A tower crane ( Fig. 9-48a) must always be...Ch. 9 - What is the mass of the diver in Fig. 9-49 if she...Ch. 9 - Prob. 5PCh. 9 - Figure 9-50 shows a pair of forceps used to hold a...Ch. 9 - Prob. 7PCh. 9 - The two trees in Fig. 9-51 are 6.6 m apart. A...Ch. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Find the tension in the two cords shown in Fig....Ch. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - The force required to pull the cork out of the top...Ch. 9 - Prob. 16PCh. 9 - Three children are trying to balance on a seesaw,...Ch. 9 - A shop sign weighing 215 N hangs from the end of a...Ch. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - 22 (II) A 20.0-m-long uniform beam weighing 650 N...Ch. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - A uniform rod AB of length 5.0 m and mass M=3.S kg...Ch. 9 - You are on a pirate ship and being forced to walk...Ch. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - 36 (II) The Achilles tendon is attached to the...Ch. 9 - If 25 kg is the maximum mass m that a person can...Ch. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - A marble column of cross-sectional area 1.4 m2...Ch. 9 - Prob. 42PCh. 9 - A sign (mass 1700 kg) hangs from the bottom end of...Ch. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - A steel wire 2.3 mm in diameter stretches by...Ch. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - (a) What is the minimum cross-sectional area...Ch. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58GPCh. 9 - Prob. 59GPCh. 9 - Prob. 60GPCh. 9 - Prob. 61GPCh. 9 - Prob. 62GPCh. 9 - Prob. 63GPCh. 9 - Prob. 64GPCh. 9 - When a mass of 25 kg is hung from the middle of a...Ch. 9 - Prob. 66GPCh. 9 - Prob. 67GPCh. 9 - Prob. 68GPCh. 9 - Prob. 69GPCh. 9 - Prob. 70GPCh. 9 - Prob. 71GPCh. 9 - Prob. 72GPCh. 9 - Prob. 73GPCh. 9 - A 2.0-m-high box with a 1.0-m-square base is moved...Ch. 9 - Prob. 75GPCh. 9 - Prob. 76GPCh. 9 - Prob. 77GPCh. 9 - Prob. 78GPCh. 9 - In a mountain-climbing technique called the...Ch. 9 - Prob. 80GPCh. 9 - A cubic crate of side s=20m is top-heavy: its cgis...
Additional Science Textbook Solutions
Find more solutions based on key concepts
When you rub your cold hands together, the friction between them results in heat that warms your hands. Why doe...
Anatomy & Physiology (6th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Explain why it is too narrow to define the biodiversity crisis as simply a loss of species.
Campbell Biology (11th Edition)
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Why isn't FeBr3 used as a catalyst in the first step of the synthesis of 1,3,5-tribromobenzene?
Organic Chemistry (8th Edition)
4. How do gross anatomy and microscopic anatomy differ?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forwardHello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forward
- The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.arrow_forward
- The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forward
- According to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardThree point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY