
Mastering Chemistry with Pearson eText -- Standalone Access Card -- for Chemistry: Structure and Properties (2nd Edition)
2nd Edition
ISBN: 9780134566290
Author: Nivaldo J. Tro
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 15SAQ
Interpretation Introduction
Interpretation:
“Enthalpy of reaction” should be explained.
Concept introduction:
Enthalpy of reaction can be determined by subtraction of enthalpy of formation of reactant from enthalpy of formation of product can be shown as follows:
ΔHrxn = ΔHproduct − ΔHreactant
Given:
ΔHH2O = −242.6 kJ/mol
ΔHCH3CH2CI = −139.2 kJ/mol
ΔHCH3CH2OH = −277.7 kJ/mol
ΔHHCI = −92.4 kJ/mol
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Reaction Fill-ins Part 2! Predict the
product(s) OR starting material of the
following reactions. Remember,
Hydride shifts are possible if/when a
more stable carbocation can exist
(depending on reaction mechanism)!
Put your answers in the indicated
boxes d.
d.
ง
HCI
A cylinder contains 12 L of water vapour at 150˚C and 5 atm. The temperature of the water vapour is raised to 175˚C, and the volume of the cylinder is reduced to 8.5 L. What is the final pressure of the gas in atmospheres?
assume that the gas is ideal
On the next page is an LC separation of the parabens found in baby wash. Parabens are
suspected in a link to breast cancer therefore an accurate way to quantitate them is desired.
a. In the chromatogram, estimate k' for ethyl paraben. Clearly indicate what values you used for
all the terms in your calculation.
b. Is this a "good" value for a capacity factor? Explain.
c. What is the resolution between n-Propyl paraben and n-Butyl paraben? Again, indicate clearly
what values you used in your calculation.
MAU
| Methyl paraben
40
20
0
-2
Ethyl paraben n-Propyl paraben
n-Butyl paraben
App ID 22925
6
8
min
Chapter 9 Solutions
Mastering Chemistry with Pearson eText -- Standalone Access Card -- for Chemistry: Structure and Properties (2nd Edition)
Ch. 9 - What is thermochemistry? Why is it important?Ch. 9 - What is energy? What is work? List some examples...Ch. 9 - Prob. 3ECh. 9 - What is the law of conservation of energy? How...Ch. 9 - A friend claims to have constructed a machine that...Ch. 9 - What is a state function? List some examples of...Ch. 9 - What is internal energy? Is internal energy a...Ch. 9 - If energy flows out of a chemical system and into...Ch. 9 - If the internal energy of the products of a...Ch. 9 - What is heat? Explain the difference between heat...
Ch. 9 - How is the change in internal energy of a system...Ch. 9 - Explain how the sum of heat and work can be a...Ch. 9 - What is heat capacity? Explain the difference...Ch. 9 - Explain how the high specific heat capacity of...Ch. 9 - If two objects, A and B, of different temperature...Ch. 9 - What is pressure-volume work? How is it...Ch. 9 - What is calorimetry? Explain the difference...Ch. 9 - What is the change in enthalpy ( H) for a...Ch. 9 - Explain the difference between an exothermic and...Ch. 9 - From a molecular viewpoint where does the energy...Ch. 9 - From a molecular viewpoint, where does the energy...Ch. 9 - Is the change in enthalpy for a reaction an...Ch. 9 - Explain how the value of H for a reaction changes...Ch. 9 - What is Hess's law? Why is it useful?Ch. 9 - What is a standard state? What is the standard...Ch. 9 - How can bond energies be used to estimate H for a...Ch. 9 - Explain the difference between exothermic and...Ch. 9 - What is the standard enthalpy of formation for a...Ch. 9 - How do you calculate Hrxn from tabulated standard...Ch. 9 - What is lattice energy? How does lattice energy...Ch. 9 - Which statement is true of the internal energy of...Ch. 9 - During an energy exchange, a chemical system...Ch. 9 - Identify each energy exchange as primarily heat or...Ch. 9 - Identify each energy exchange as primarily heat or...Ch. 9 - A system releases 622 kJ of heat and does 105 kJ...Ch. 9 - A system absorbs 196 kJ of heat, and the...Ch. 9 - The gas in a piston (defined as the system) warms...Ch. 9 - The air in an inflated balloon (defined as the...Ch. 9 - A person packs two identical coolers for a picnic,...Ch. 9 - A kilogram of aluminum metal and a kilogram of...Ch. 9 - How much heat is required to warm 1.50 L of water...Ch. 9 - How much heat is required to warm 1.50 kg of sand...Ch. 9 - Suppose that 25 g of each substance is initially...Ch. 9 - An unknown mass of each substance, initially at...Ch. 9 - How much work (in J) is required to expand the...Ch. 9 - The average human lung expands by about 0.50 L...Ch. 9 - The air within a piston equipped with a cylinder...Ch. 9 - A gas is compressed from an initial volume of 5.55...Ch. 9 - When 1 mol of a fuel burns at constant pressure,...Ch. 9 - The change in internal energy for the combustion...Ch. 9 - Is each process exothermic or endothermic?...Ch. 9 - Is each process exothermic or endothermic?...Ch. 9 - Consider the thermochemical equation for the...Ch. 9 - What mass of natural gas (CH4) must bum to emit...Ch. 9 - Nitromethane (CH3NO2) burns in air to produce...Ch. 9 - Titanium reacts with iodine to form titanium (III)...Ch. 9 - The propane fuel (C3H8) used in gas barbeques bums...Ch. 9 - Charcoal is primarily carbon. Determine the mass...Ch. 9 - We submerge a silver block, initially at 58.5 °C...Ch. 9 - We submerge a 32.5-g iron rod, initially at 22.7...Ch. 9 - We submerge a 31.1-g wafer of pure gold initially...Ch. 9 - We submerge a 2.85-g lead weight, initially at...Ch. 9 - Two substances, A and B, initially at different...Ch. 9 - A 2.74-g sample of a substance suspected of being...Ch. 9 - Exactly 1.5 g of a fuel burns under conditions of...Ch. 9 - In order to obtain the largest possible amount of...Ch. 9 - When 0.514 g of biphenyl (C12H10) undergoes...Ch. 9 - Mothballs are composed primarily of the...Ch. 9 - Zinc metal reacts with hydrochloric acid according...Ch. 9 - Instant cold packs used to ice athletic injuries...Ch. 9 - For each generic reaction, determine the value of...Ch. 9 - Consider the generic reaction: A+2BC+3DH=155kJ...Ch. 9 - Calculate Hrxn for the reaction:...Ch. 9 - Calculate Hrxn for the reaction:...Ch. 9 - Calculate Hrxn for the reaction:...Ch. 9 - Calculate Hrxn for the reaction:...Ch. 9 - Hydrogenation reactions are used to add hydrogen...Ch. 9 - Ethanol is a possible fuel. Use average bond...Ch. 9 - Hydrogen, a potential future fuel, can be produced...Ch. 9 - Hydroxyl radicals react with and eliminate many...Ch. 9 - Write an equation for the formation of each...Ch. 9 - Prob. 82ECh. 9 - S3. Hydrazine (N2H4) is a fuel used by some...Ch. 9 - Prob. 84ECh. 9 - Prob. 85ECh. 9 - Prob. 86ECh. 9 - Prob. 87ECh. 9 - Prob. 88ECh. 9 - Top fuel dragsters and funny cars burn...Ch. 9 - Prob. 90ECh. 9 - Prob. 91ECh. 9 - Rubidium iodide has a lattice energy of-617...Ch. 9 - Prob. 93ECh. 9 - Prob. 94ECh. 9 - Use the Born-Haber cycle and data from Appendix...Ch. 9 - Prob. 96ECh. 9 - The kinetic energy of a rolling billiard ball is...Ch. 9 - A100-W light bulb is placed in a cylinder equipped...Ch. 9 - Evaporating sweat cools the body because...Ch. 9 - LP gas burns according to the exothermic reaction:...Ch. 9 - Use standard enthalpies of formation to calculate...Ch. 9 - Dry ice is solid carbon dioxide. Instead of...Ch. 9 - A 25.5-g aluminum block is warmed to 65.4 °C and...Ch. 9 - We mix 50.0 mL of ethanol (density = 0.789 g/mL)...Ch. 9 - Prob. 105ECh. 9 - Prob. 106ECh. 9 - One tablespoon of peanut butter has a mass of 16...Ch. 9 - Prob. 108ECh. 9 - Prob. 109ECh. 9 - When we burn 10.00 g of phosphorus in O2 (g) to...Ch. 9 - The H for the oxidation of S in the gas phase to...Ch. 9 - The Hfo of TiI3(s) is -328 kJ/mol; and the Ho for...Ch. 9 - A copper cube measuring 1.55 cm on edge and an...Ch. 9 - A pure gold ring and pure silver ring have a total...Ch. 9 - The reaction of Fe2O3(s) with Al(s) to form...Ch. 9 - Prob. 116ECh. 9 - Prob. 117ECh. 9 - Prob. 118ECh. 9 - Prob. 119ECh. 9 - Calculate the heat of atomization (see previous...Ch. 9 - Prob. 121ECh. 9 - Prob. 122ECh. 9 - Prob. 123ECh. 9 - Prob. 124ECh. 9 - Prob. 125ECh. 9 - Find H, E, q, and w for the freezing of water at...Ch. 9 - The heat of vaporization of water at 373 K is 40.7...Ch. 9 - Prob. 128ECh. 9 - Prob. 129ECh. 9 - Prob. 130ECh. 9 - Prob. 131ECh. 9 - Prob. 132ECh. 9 - Prob. 133ECh. 9 - Which expression describes the heat emitted in a...Ch. 9 - Prob. 135ECh. 9 - Prob. 136ECh. 9 - Prob. 137ECh. 9 - Prob. 138ECh. 9 - Prob. 139ECh. 9 - Which statement is true of a reaction in which V...Ch. 9 - Which statement is true of an endothermic...Ch. 9 - When a firecracker explodes, energy is obviously...Ch. 9 - Prob. 143ECh. 9 - Classify each process as endothermic or...Ch. 9 - A propane tank on a home barbeque contains 10.4 x...Ch. 9 - Prob. 146ECh. 9 - Consider the decomposition of liquid hydrogen...Ch. 9 - Prob. 148ECh. 9 - A chemical system produces 155 kJ of heat and does...Ch. 9 - Which sample is most likely to undergo the...Ch. 9 - Prob. 3SAQCh. 9 - A 12.5-g sample of granite initially at 82.0 C is...Ch. 9 - A cylinder with a moving piston expands from an...Ch. 9 - When a 3.80-g sample of liquid octane (C8H18)...Ch. 9 - Hydrogen gas reacts with oxygen to form water....Ch. 9 - Manganese reacts with hydrochloric acid to produce...Ch. 9 - Consider the reactions: A2BH1A3CH2 What is H for...Ch. 9 - Use standard enthalpies of formation to determine...Ch. 9 - Prob. 11SAQCh. 9 - Prob. 12SAQCh. 9 - Prob. 13SAQCh. 9 - Which set of compounds is arranged in order of...Ch. 9 - Prob. 15SAQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- d. In Figure 4, each stationary phase shows some negative correlation between plate count and retention factor. In other words, as k' increases, N decreases. Explain this relationship between k' and N. Plate Count (N) 4000 3500 2500 2000 1500 1000 Figure 4. Column efficiency (N) vs retention factor (k') for 22 nonionizable solutes on FMS (red), PGC (black), and COZ (green). 3000 Eluent compositions (acetonitrile/water, A/W) were adjusted to obtain k' less than 15, which was achieved for most solutes as follows: FMS (30/70 A/W), PGC (60/40), COZ (80/20). Slightly different compositions were used for the most highly retained solutes. All columns were 50 mm × 4.6 mm id and packed with 5 um particles, except for COZ, which was packed with 3 um particles. All other chromatographic conditions were constant: column length 5 cm, column j.§. 4.6 mm, flow rate 2 mL/min, column temperature 40 °C, and injection volume 0.5 μL Log(k'x/K'ethylbenzene) FMS 1.5 1.0 0.5 0.0 ཐྭ ཋ ཤྩ བྷྲ ; 500 0 5 10…arrow_forwardf. Predict how the van Deemter curve in Figure 7 would change if the temperature were raised from 40 °C to 55 °C. Figure 7. van Desmter curves in reduced coordinates for four nitroalkane homologues (nitropropane, black; nitrobutane, red; nitropentane, blue; and nitrohexane, green) separated on the FMS phase. Chromatographic conditions: column dimensions 50 mm × 4.6 mm id, eluent 30/70 ACN/water, flow rates 0.2-5.0 mL/min, injection volume 0.5 and column temperature 40 °C. No corrections to the plate heights have been made to account for extracolumn dispersion. Reduced Plate Height (h) ° 20 40 60 Reduced Velocity (v) 8. (2) A water sample is analyzed for traces of benzene using headspace analysis. The sample and standard are spiked with a fixed amount of toluene as an internal standard. The following data are obtained: Ppb benzene Peak area benzene Peak area toluene 10.0 252 376 Sample 533 368 What is the concentration of benzene in the sample?arrow_forwardLiquid chromatography has been used to track the concentration of remdesivir (a broad-spectrum antiviral drug, structure shown at right) in COVID patients undergoing experimental treatments. Intensity The authors provide the following details regarding standard solutions preparation: HN CN HO OH NH2 Remdesivir (RDV) stock solution (5000 µg/mL) was prepared by dissolving RDV drug powder using the mixture of DMSO: MeOH (30:70 v/v). The RDV working standard solutions for calibration and quality controls were prepared using methanol in concentrations of 100, 10, 1, 0.1, 0.01 µg/mL. 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, 500, 1000, and 5000 ng/mL sample solutions were prepared freshly by spiking calibration standard solutions into the blank human plasma samples for method calibration. a) What type of calibration method is being described? Why do you think the authors chose this method as opposed to another? b) Based on the details provided in part a, describe an appropriate method blank…arrow_forward
- Recent advancements in liquid chromatography include the development of ultrahigh pressure liquid chromatography (UHPLC) and an increased use of capillary columns that had previously only been used with gas chromatography. Both of these advances have made the development of portable LC systems possible. For example, Axcend Corp. makes a portable system that uses a capillary column with an internal diameter of 150-μm-that is packed with 1.7-um stationary phase particles. In contrast, a traditional LC column has a 4.6 mm internal diameter and utilizes 5-um stationary phase particles. a) Explain one advantage that is afforded by the use of a capillary column in liquid chromatographic separation. Explain one disadvantage of capillary columns. b) Explain how the use of smaller stationary phase particles can improve the resolution of a separation. Include any relevant equations that support your explanation. c) A scientist at Rowan University is using the Axcend LC to conduct analyses of F…arrow_forwardThis paper describes the use of fullerene molecules, also known as buckyballs, as a stationary phase for liquid chromatography. The performance of the fullerene-modified stationary phase (FMS) is compared to that of a more common C18 stationary phase and to two other carbon-based stationary phases, PGC and COZ. A. 10A OM B. - Figure 1. Idealized drawing of the cross-section of a pore inside a silica particle, showing the relative densities of aminopropylsilyl (red/green) and fullerene (blue) groups: (A) full cross- section; (B) detailed view of covalent bonding of fullerene to the silica surface. Surface densities of silyl and fullerene groups were inferred from elemental composition results obtained at each stage of the synthesis (see Table 1). Absorbance (mAU, 220 nm) 700 600 500 400 300 200 100 a. Define selectivity, a, with words and an equation. b. Explain how the choice of stationary phase affects selectivity. c. Calculate the resolution of the nitrobenzene and toluene peaks in…arrow_forwardNormalized Intensity (a. u.) 0.5 1.0 A 3D-printed GC column (shown below) was created for use with "micro" gas chromatography applications. To prove its utility, it was used to separate a mixture of alkanes (C9-C18, C22, C24). For the separation shown below, the column temperature was ramped from 40 °C to 250 °C at a rate of 30 °C per minute. (a) 9 10 = 1 mm 12 13 15 22 0.0 0 100 200 300 400 Time (sec) a) What detector would you use for this analysis? Justify your selection. b) Explain how the chromatogram would change if the separation was run isothermally. c) Explain how the chromatogram would change if the temperature ramp were increased to 50 °C per minute.arrow_forward
- Devise a synthesis of each compound from the indicated starting material. You may also use any organic compounds with one or two carbons and any needed inorganic reagents. a. Brarrow_forwardPlease help me with #2b & #3 using the data.arrow_forwardHeparin is used as an anti-coagulant. A risk of heparin use is thrombocytopenia, or low platelet count. This risk is minimized with the use of low molecular weight heparins (LMWH), therefore it is desirable to separate LMWH from higher molecular weight heparins. The method of choice to do this is molecular exclusion chromatography. Below is a chromatogram from a molecular exclusion chromatographic run. Peaks ranging from A to J are clearly distinguishable. The heparin mixture that was analyzed had anywhere from 6 to 30 repeat units of monomer (where the heparin with 30 repeat units would be roughly five times the size of the heparin with six repeat units). a. Which letter most likely represents the peak with 6 repeat units given these heparin polymers were separated with molecular exclusion chromatography? b. Explain your reasoning describing the mechanism of retention in molecular exclusion chromatography. 100 80 60 60 Relative Abundance 40 40 E GH 20 20 B A 36 38 40 42 44 46 48 50 50…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

World of Chemistry
Chemistry
ISBN:9780618562763
Author:Steven S. Zumdahl
Publisher:Houghton Mifflin College Div
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY