EBK STRUCTURAL ANALYSIS
EBK STRUCTURAL ANALYSIS
6th Edition
ISBN: 9780357030974
Author: KASSIMALI
Publisher: VST
Question
Book Icon
Chapter 9, Problem 14P
To determine

Find maximum positive shear and bending moment at point B due to the series of four moving concentrated loads

Expert Solution & Answer
Check Mark

Explanation of Solution

Calculation:

Apply a 1 k unit moving load at a distance of x from left end A.

Sketch the free body diagram of beam as shown in Figure 1.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  1

Refer Figure 1.

Find the equation of support reaction (Ay) at A using equilibrium equation:

Take moment about point C.

Consider moment equilibrium at point C.

Consider clockwise moment as positive and anticlockwise moment as negative.

Sum of moment at point C is zero.

ΣMC=0Ay(30)1(30x)=0Ay(30)30+x=030Ay=30x

Ay=1x30        (1)

Find the equation of support reaction (Cy) at C using equilibrium equation:

Apply vertical equilibrium equation of forces.

Consider upward force as positive (+) and downward force as negative ().

Ay+Cy=1

Substitute 1x30 for Ay.

1x30+Cy=1Cy=11+x30Cy=x30        (2)

Influence line for shear at B.

Find the equation of shear force at B of portion AB (0x<15ft).

Sketch the free body diagram of the section AB as shown in Figure 2.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  2

Refer Figure 2.

Apply equilibrium equation of forces.

Consider upward force as positive (+) and downward force as negative ().

ΣFy=0AySB1=0SB=Ay1

Substitute 1x30 for Ay.

SB=1x301=x30

Find the equation of shear force at B of portion BC (15ft<x30ft).

Sketch the free body diagram of the section BC as shown in Figure 3.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  3

Refer Figure 3.

Apply equilibrium equation of forces.

Consider upward force as positive (+) and downward force as negative ().

ΣFy=0

SB1+Cy=0SB=1Cy

Substitute x30 for Cy.

SB=1x30

Thus, the equations of the influence line for SB are,

SB=x30 0x<15ft        (3)

SB=1x30 15ft<x30ft        (4)

Find the value of influence line ordinate of shear force at various points of x using the Equations (3) and (4) and summarize the value as in Table 1.

x (ft)SB(k/k)
01
1512
15+12
300

Draw the influence lines for the shear force at point B using Table 1 as shown in Figure 4.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  4

Refer Figure 4.

Find the slope (θAB) of influence line diagram of shear at B in the portion AB.

θAB=12LAB

Here, LAB is the length of the beam from A to B.

Substitute 15 ft for LAB.

θAB=1215=130

Find the slope (θBC) of influence line diagram of shear at B in the portion BC.

θBC=12LBC

Here, LBC is the length of the beam from B to C.

Substitute 15 ft for LBC.

θBC=1215=130

Sketch the loading position as shown in Figure 5.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  5

Find the maximum positive shear force at B.

Sketch the loading position on the beam when the load 1 placed at just right of B as shown in Figure 6.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  6

Refer Figure 6.

Find the shear force at B when the load 1 placed at just right of B.

(SB)1=10(LBC)(θBC)+20(0)+20(0)+5(0)

Substitute 15 ft for LBC and 130 for θBC.

(SB)1=10(15)(130)+20(0)+20(0)+5(0)=5k

Sketch the loading position on the beam when the load 2 placed at just right of B as shown in Figure 7.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  7

Refer Figure 7.

Find the shear force at B when the load 2 placed at just right of B.

(SB)2=10(0)+20(LBC)(θBC)+20(LBC10)(θBC)+5(0)

Substitute 15 ft for LBC and 130 for θBC.

(SB)2=10(0)+20(15)(130)+20(1510)(130)+5(0)=0+10+3.33+0=13.33k

Sketch the loading position on the beam when the load 3 placed at just right of B as shown in Figure 8.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  8

Refer Figure 8.

Find the shear force at B when the load 3 placed at just right of B.

(SB)3=10(0)+20(LAB10)(θAB)+20(LBC)(θBC)+5(LBC10)(θBC)

Substitute 15 ft for LAB, 130 for θAB, 15 ft for LBC, and 130 for θBC.

(SB)3=10(0)+20(1510)(130)+20(15)(130)+5(1510)(130)=03.33+10+0.83=7.5k

Sketch the loading position on the beam when the load 4 placed at just right of B as shown in Figure 9.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  9

Refer Figure 9.

Find the shear force at B when the load 3 placed at just right of B.

(SB)4=10(0)+20(0)+20(LAB10)(θAB)+5(LBC)(θBC)

Substitute 15 ft for LAB, 130 for θAB, 15 ft for LBC, and 130 for θBC.

(SB)4=10(0)+20(0)+20(1510)(130)+5(15)(130)=0+03.33+2.5=0.83k

Maximum positive shear force at B as follows.

The maximum positive shear at B is the maximum of (SB)1, (SB)2, (SB)3, and (SB)4.

Therefore, the maximum positive shear at point B is 13.33k_.

Influence line for moment at B.

Refer Figure 2.

Consider clockwise moment as positive and anticlockwise moment as negative.

Find the equation of moment at B of portion AB (0x<15ft).

MB=Ay(15)(1)(15x)

Substitute 1x30 for Ay.

MB=(1x30)(15)(1)(15x)=15x215+x=x2

Refer Figure 3.

Consider clockwise moment as negative and anticlockwise moment as positive.

Find the equation of moment at B of portion BC (15ft<x30ft).

MB=Cy(15)(1)[15(30x)]=15Cy15+(30x)=15Cy+15x

Substitute x30 for Cy.

MB=15(x30)+15x=x2+15x=15x2

Thus, the equations of the influence line for MB are,

MB=x2 0x<15ft        (5)

MB=15x2 15ft<x30ft        (6)

Find the value of influence line ordinate of moment at various points of x using the Equations (5) and (6) and summarize the value as in Table 2.

x (ft)MB (k-ft/k)
00
157.5
300

Draw the influence lines for the moment at point B using Table 2 as shown in Figure 10.

EBK STRUCTURAL ANALYSIS, Chapter 9, Problem 14P , additional homework tip  10

Refer Figure 9.

The slope of portion AB and BC is same.

Find the slope (ϕ) of influence line diagram of moment at B.

ϕ=7.5LAB

Here, LAB is the length of the beam from A to B.

Substitute 15 ft for LAB.

ϕAB=7.515=12

Find the maximum positive bending moment at B.

Refer Figure 6.

Find the bending moment at B when the load 1 placed at just right of B.

(MB)1=10(LBC)(ϕ)+20(0)+20(0)+5(0)

Substitute 15 ft for LBC and 12 for ϕ.

(MB)1=10(15)(12)+20(0)+20(0)+5(0)=75k-ft

Refer Figure 7.

Find the bending moment at B when the load 2 placed at just right of B.

(MB)2=10(0)+20(LBC)(ϕ)+20(LBC10)(ϕ)+5(0)

Substitute 15 ft for LBC and 12 for ϕ.

(MB)2=10(0)+20(15)(12)+20(1510)(12)+5(0)=0+150+50=200k-ft

Refer Figure 8.

Find the bending moment at B when the load 3 placed at just right of B.

(MB)3=10(0)+20(LAB10)(ϕ)+20(LBC)(ϕ)+5(LBC10)(ϕ)

Substitute 15 ft for LAB, 12 for ϕ, and 15 ft for LBC.

(MB)3=10(0)+20(1510)(12)+20(15)(12)+5(1510)(12)=0+50+150+12.5=212.5k-ft

Refer Figure 9.

Find the bending moment at B when the load 1 placed at just right of B.

(MB)4=10(0)+20(0)+20(LAB10)(ϕ)+5(LBC)(ϕ)

Substitute 15 ft for LAB, 12 for ϕ, and 15 ft for LBC.

(MB)4=10(0)+20(0)+20(1510)(12)+5(15)(12)=0+0+50+37.5=87.5k-ft

Maximum positive bending moment at B as follows.

The maximum positive bending moment at B is the maximum of (MB)1, (MB)2, (MB)3, and (MB)4.

Therefore, the maximum positive bending moment at point B is 212.5k-ft_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Ex 11: Design inlet system for the road in figure below with catchment area=86 m*239 m. C=0.8, i=100 mm/hr, Gutter data: y max.=8cm, n=0.018, k=0.38, slope=%1, Z=25, %25 clogging, (space=bar=2 cm). Inlet type used (consists of tow part curb and Q grad inlet =0.6Qgutter max. grade inlet) Q curb inlet =0.4Qgutter max. 0.8*100 3600*1000 Solution: (Qs) Total=CIA= Qgutter (Max.)=k²√√s y8/3 = 0.38- 25 0.018 *(86*239)=0.457 m³/s √0.01 0.088/3= 0.0627 m³/s 30 m 12 m 2mL 12 m 30 m Residence 30 m Streat 12 m Bof 2 m ㅈ 239 m A2 A1
(20 02 A concrete beam of rectangular cross-section (300 x 400) mm is Prestressed with wires located at (30) mm from the top of the beam .The wires are initially tensioned to 0-6 mm) diameter wires at (100) mm from the soffit of the beam and (5-6 mm) a stress of (900 N/mm²). Compute the percentage loss of stress in steel after transfer due to elastic deformation of concrete. Given: Es=200 x 103 N/mm², Ec = 25 x 10³ N/mm². 300 за 60000 400 100 546 2046
Reinforced Concrete Design First Monthly Exam 24/02/2 Q1. A simply supported rectangular beam (300 x 400) mm and span (12) m with live load of from the soffit of the beam. Compute the stresses at mid-span of beam for the following (5 kN/m). At the centre of the beam the prestressing force of (120) kN is located at (50 mm) conditions: (a) Prestress + self- weight of beam (initial stage). (b) Prestress + self- weight of beam + Live Load (service stage). 3:00 400 120 K * 12m 5kN/m. 120 KN
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,