Concept explainers
For each of the following balanced chemical equations, calculate how many grams of the product(s) would be produced by complete reaction of 0.125 mole of the first reactant.
msp;
msp;
msp;
msp;
(a)
Interpretation:
Grams of the product(s) produced by complete reaction of
Concept Introduction:
For a substance, number of moles is related to mass and molar mass of the substance as follows:
Here, m is mass of substance in g and M is molar mass of substance in g/mol.
Thus, from number of moles, mass can be calculated as follows:
Answer to Problem 13QAP
Mass of AgOH ( s ) Produced =
Mass of LiNO3 ( a q ) produced =
Explanation of Solution
According to the balanced equation, mole ratio between AgNO3 ( a q ) and AgOH ( s ) =
So, Amount of AgOH ( s ) produced =
=
Molar mass of AgOH ( s ) =
Mass of AgOH ( s ) Produced =
=
According to the balanced equation, mole ratio between AgNO3 ( a q ) and LiNO3 ( a q ) =
So, Amount of LiNO3 ( a q ) produced =
=
Molar mass of LiNO3 ( a q ) =
Mass of LiNO3 ( a q ) produced =
=
(b)
Interpretation:
Grams of the product(s) produced by complete reaction of
Concept Introduction:
For a substance, number of moles is related to mass and molar mass of the substance as follows:
Here, m is mass of substance in g and M is molar mass of substance in g/mol.
Thus, from number of moles, mass can be calculated as follows:
Answer to Problem 13QAP
Mass of AlCl3 ( a q ) produced =
Mass of CaSO4 ( s ) produced =
Explanation of Solution
According to the balanced equation, mole ratio between Al2 (SO4 )3 ( a q ) and AlCl3 ( a q ) =
So, Amount of AlCl3 ( a q ) produced =
=
Molar mass of AlCl3 ( a q ) =
Mass of AlCl3 ( a q ) Produced =
=
According to the balanced equation, mole ratio between Al2 (SO4 )3 ( a q ) and CaSO4 ( s ) =
So, Amount of CaSO4 ( s ) produced =
=
Molar mass of CaSO4 ( s ) =
Mass of CaSO4 ( s ) produced =
=
(c)
Interpretation:
Grams of the product(s) produced by complete reaction of
Concept Introduction:
For a substance, number of moles is related to mass and molar mass of the substance as follows:
Here, m is mass of substance in g and M is molar mass of substance in g/mol.
Thus, from number of moles, mass can be calculated as follows:
Answer to Problem 13QAP
Mass of CaCl2 ( a q ) Produced =
Mass of CO2 ( g ) produced =
Mass of H2 O( l ) produced =
Explanation of Solution
According to the balanced equation, mole ratio between CaCO3 ( s ) and CaCl2 ( a q ) =
So, Amount of CaCl2 ( a q ) produced =
=
Molar mass of CaCl2 ( a q ) =
Mass of CaCl2 ( a q ) Produced =
=
According to the balanced equation, mole ratio between CaCO3 ( s ) and CO2 ( g ) =
So, Amount of CO2 ( g ) produced =
=
Molar mass of CO2 ( g ) =
Mass of CO2 ( g ) produced =
=
According to the balanced equation, mole ratio between CaCO3 ( s ) and H2 O( l ) =
So, Amount of H2 O( l ) produced =
=
Molar mass of H2 O( l ) =
Mass of H2 O( l ) produced =
=
(d)
Interpretation:
Grams of the product(s) produced by complete reaction of
Concept Introduction:
For a substance, number of moles is related to mass and molar mass of the substance as follows:
Here, m is mass of substance in g and M is molar mass of substance in g/mol.
Thus, from number of moles, mass can be calculated as follows:
Answer to Problem 13QAP
Mass of CO2 ( g ) produced =
Mass of H2 O( g ) produced =
Explanation of Solution
According to the balanced equation, mole ratio between C4 H1 0 ( g ) and CO2 ( g ) =
So, Amount of CO2 ( g ) produced =
=
Molar mass of CO2 ( g ) =
Mass of CO2 ( g ) produced =
=
According to the balanced equation, mole ratio between C4 H1 0 ( g ) and H2 O( g ) =
So, Amount of H2 O( g ) produced =
=
Molar mass of H2 O( g ) =
Mass of H2 O( g ) produced =
=
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
- You are given a solid mixture of NaNO2 and NaCl and are asked to analyze it for the amount of NaNO2 present. To do so, you allow the mixture to react with sulfamic acid, HSO3NH2, in water according to the equation NaNO2(aq) + HSO3NH2(aq) NaHSO4(aq) + H2O() + N2(g) What is the weight percentage of NaNO2 in 1.232 g of the solid mixture if reaction with sulfa-mic acid produces 295 mL of dry N2 gas with a pressure of 713 mm Hg at 21.0 C?arrow_forwardThe formation of water-Insoluble silver chloride is useful in the analysis of chloride-containing substances. Consider the following unbalanced equation: BaCl2(aq) + AgNO3(aq) AgCI(s) + Ba(NO3)2(aq) (a) Write the balanced equation. (b) What mass of AgNO3, in grams, is required for complete reaction with 0.156 g of BaCI2? What mass of AgCI is produced?arrow_forwardAqueous solutions of ammonium sulfide, (NH4)2S, and Hg(NO3)2 react to produce HgS and NH4NO3. (a) Write the overall, balanced equation for the reaction. Indicate the state (s, aq) for each compound. (b) Name each compound. (c) What type of reaction is this?arrow_forward
- Oxidation of 1.00 g of carbon monoxide, CO, produces 1.57 g of carbon dioxide, CO2. How many grams of oxygen were required in this reaction?arrow_forwardAqueous solutions of ammonium sulfide and mercury(II) nitrate react and a precipitate forms. (a) Write the overall balanced chemical equation and indicate the state (aq) or (s) for each compound. (b) Name each product. (c) Write the complete ionic equation. (d) Write the net ionic equation.arrow_forwardDetermine the volume of sulfuric acid solution needed to prepare 37.4 g of aluminum sulfate, Al2(SO4)3, by the reaction 2Al(s)+3H2SO4(aq)Al2(SO4)3(aq)+3H2(g) The sulfuric acid solution, whose density is 1.104 g/mL, contains 15.0% H2SO4 by mass.arrow_forward
- Classify each of the following reactions as a combination reaction, decomposition reaction, displacement reaction, or combustion reaction. a When solid calcium oxide, CaO, is exposed to gaseous sulfur trioxide, SO3, solid calcium sulfate, CaSO4, is formed. b Calcium metal (solid) reacts with water to produce a solution of calcium hydroxide, Ca(OH)2, and hydrogen gas. c When solid sodium hydrogen sulfite, NaHSO3, is heated, solid sodium sulfite, Na2SO3, sulfur dioxide gas, SO2, and water vapor are formed. d Magnesium reacts with bromine to give magnesium bromide, MgBr2.arrow_forwardPhosphoric acid is prepared by dissolving phosphorus(V) oxide, P4O10, in water. What is the balanced equation for this reaction? How many grams of P4O10 are required to make 1.19 L of aqueous solution containing 5.50% phosphoric acid by mass? The density of the solution is 1.025 g/mL.arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward
- Potassium permanganate (KMnO4) solutions are used for the determination of Fe2+ in samples of unknown concentration. As a laboratory assistant, you are supposed to prepare 500 mL of a 0.1000 M KMnO4 solution. What mass of KMnO4, in grams, do you need?arrow_forwardBalance each of the following equations, and then write the net ionic equation. Show states for all reactants and products (s, . g, aq). (a) the reaction of sodium hydroxide and iron(II) chloride to give iron(II) hydroxide and sodium chloride (b) the reaction of barium chloride with sodium carbonate to give barium carbonate and sodium chloride (c) the reaction of ammonia with phosphoric acidarrow_forwardAn unknown solid acid is either citric acid or tartaric acid. To determine which acid you have, you titrate a sample of the solid with aqueous NaOH and from this determine the molar mass of the unknown acid. The appropriate equations are as follows. Citric acid: H3C6H5O7(aq) + 3 NaOH(aq) 3 H2O(l) + Na3C6H5O7(aq) Tartaric acid: H2C4H4O6(aq)+ 2 NaOH(aq) 2 H2O(l) + Na2C4H4O6(aq) A 0.956-g sample requires 29.1 mL of 0.513 M NaOH to consume the acid completely. What is The unknown acid?arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning