
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 111CP
To determine
(a)
Whether the statement "A general incompressible flow problem with constant fluid properties has four unknowns." is true or false.
To determine
(b)
Whether the statement "A general compressible flow problem has five unknowns." is true or false.
To determine
(c)
Whether the statement "For an incompressible fluid
To determine
(d)
Whether the statement "For an incompressible fluid mechanics problem involving a Newtonian fluid with constant properties, the continuity equation and the Navier-Stokes equation provide enough equations to match the number of unknowns." is true or false.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A prismatic beam is built into a structure. You can consider the boundary conditions at A and B to be
fixed supports. The beam was originally designed to withstand a triangular distributed load, however,
the loading condition has been revised and can be approximated by a cosine function as shown in the
figure below. You have been tasked with analysing the structure. As the beam is prismatic, you can
assume that the bending rigidity (El) is constant.
wwo cos
2L
x
A
B
Figure 3: Built in beam with a varying distributed load
In order to do this, you will:
a. Solve the reaction forces and moments at point A and B.
Hint: you may find it convenient to use the principal of superposition.
(2%)
b. Plot the shear force and bending moment diagrams and identify the maximum shear force
and bending moment.
(2%)
c. Develop an expression for the vertical deflection. Clearly state your expression in terms of x.
(1%)
Question 1: Beam Analysis
Two beams (ABC and CD) are connected using a pin immediately to the left of Point C. The pin acts
as a moment release, i.e. no moments are transferred through this pinned connection. Shear forces
can be transferred through the pinned connection. Beam ABC has a pinned support at point A and a
roller support at Point C. Beam CD has a roller support at Point D. A concentrated load, P, is applied
to the mid span of beam CD, and acts at an angle as shown below. Two concentrated moments, MB
and Mc act in the directions shown at Point B and Point C respectively. The magnitude of these
moments is PL.
Moment Release
A
B
с
°
MB = PL
Mc=
= PL
-L/2-
-L/2-
→
P
D
Figure 1: Two beam arrangement for question 1.
To analyse this structure, you will:
a) Construct the free body diagrams for the structure shown above. When constructing your
FBD's you must make section cuts at point B and C. You can represent the structure as three
separate beams. Following this, construct the…
A cantilevered rectangular prismatic beam has three loads applied. 10,000N in the positive x
direction, 500N in the positive z direction and 750 in the negative y direction. You have been tasked
with analysing the stresses at three points on the beam, a, b and c.
32mm
60mm
24mm
180mm
15mm
15mm
40mm
750N
16mm
500N
x
10,000N
Figure 2: Idealisation of the structure and the applied loading (right). Photograph of the new product
(left). Picture sourced from amazon.com.au.
To assess the design, you will:
a) Determine state of stress at all points (a, b and c). These points are located on the exterior
surface of the beam. Point a is located along the centreline of the beam, point b is 15mm
from the centreline and point c is located on the edge of the beam. When calculating the
stresses you must consider the stresses due to bending and transverse shear. Present your
results in a table and ensure that your sign convention is clearly shown (and applied
consistently!)
(3%)
b) You have identified…
Chapter 9 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 11P
Ch. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - In this chapter we derive the continuity equation...Ch. 9 - Prob. 22PCh. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Verify that the spiraling line vortex/sink flow in...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Prob. 28PCh. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - Prob. 34PCh. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Prob. 39CPCh. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 41CPCh. 9 - What is significant about curves of constant...Ch. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 46PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 49PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64EPCh. 9 - Prob. 65PCh. 9 - Prob. 66EPCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 69PCh. 9 - Prob. 70EPCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - Prob. 77PCh. 9 - Prob. 78CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Prob. 85PCh. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Prob. 108CPCh. 9 - Prob. 109CPCh. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 118PCh. 9 - Prob. 119PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady velocity field is given by...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - Prob. 135PCh. 9 - Prob. 136PCh. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 7.82 Water flows from the reservoir on the left to the reservoir on the right at a rate of 16 cfs. The formula for the head losses in the pipes is h₁ = 0.02(L/D)(V²/2g). What elevation in the left reservoir is required to produce this flow? Also carefully sketch the HGL and the EGL for the system. Note: Assume the head-loss formula can be used for the smaller pipe as well as for the larger pipe. Assume α = 1.0 at all locations. Elevation = ? 200 ft 300 ft D₁ = 1.128 ft D2=1.596 ft 12 2012 Problem 7.82 Elevation = 110 ftarrow_forwardHomework#5arrow_forwardA closed-cycle gas turbine unit operating with maximum and minimum temperature of 760oC and 20oC has a pressure ratio of 7/1. Calculate the ideal cycle efficiency and the work ratioarrow_forwardConsider a steam power plant that operates on a simple, ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine The thermal efficiency of the cycle,The mass flow rate of the steam and the temperature rise of the cooling waterarrow_forwardTwo reversible heat engines operate in series between a source at 600°C, and a sink at 30°C. If the engines have equal efficiencies and the first rejects 400 kJ to the second, calculate: the temperature at which heat is supplied to the second engine, The heat taken from the source; and The work done by each engine. Assume each engine operates on the Carnot cyclearrow_forwardA steam turbine operates at steady state with inlet conditions of P1 = 5 bar, T1 = 320°C. Steam leaves the turbine at a pressure of 1 bar. There is no significant heat transfer between the turbine and its surroundings, and kinetic and potential energy changes between inlet and exit are negligible. If the isentropic turbine efficiency is 75%, determine the work developed per unit mass of steam flowing through the turbine, in kJ/kgarrow_forwardHomework#5arrow_forwardMember AB has the angular velocity wAB = 2.5 rad/s and angular acceleration a AB = 9 rad/s². (Figure 1) Determine the magnitude of the velocity of point C at the instant shown. Determine the direction of the velocity of point C at the instant shown. Determine the magnitude of the acceleration of point C at the instant shown. Determine the direction of the acceleration of point C at the instant shown. A 300 mm WAB α AB B 500 mm 0=60° y 200 mmarrow_forwardYou are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m Ca)Calculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) b) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. c) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY