Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 101GP
In Problem 100 (Fig. 9–53), what is the upper limit on mass m if it is to rebound from M, slide up the incline, stop, slide down the incline, and collide with M again?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(1) Identical twins Kate and Karen are rowing their boat on a hot Summer afternoon when they decide to go for a swim. Kate, whose mass is 40 kilograms, jumps off the front of the boat at a speed of 3.00 m/sec. Karen jumps off the back at a speed of 4.00
m/sec. If the 70 kilogram rowboat is moving at 1.00 m/s before the girls jump, what is the speed of the rowboat after the girls jump?
m/sec
J) A 0.10 kilogram piece of modeling clay is tossed at a motionless 0.10 kilogram block of wood and sticks. The block slides across a frictionless table at 13.7 m/sec.
LAt what speed was the clay tossed?
m/sec
Enter a number.
II. The clay is replaced with a "bouncy" ball tossed with the same speed. The bouncy ball rebounds from the wooden block at the same speed as in part I. What effect does this have on the wooden block?
O There is no momentum difference upon impact with the block between the clay and bouncy ball since they are thrown at the same speed and have the same mass.
O The wooden block…
M‘onsider a particle of mass 2 kg. In first reference frame, the velocity of the particle is 4im/s. The second reference frame is moving with velocity 3f m/s. Find the kinetic energy of the particle as seen from second reference frame!. (2) 507 (b) 9J (¢) 25] (d 1J
A particle (with a rest mass of
mo) moving at ` the speed of
light has a relative mass of
1.67 m 0
1.25 m 0
0.8 m, 0
0.6 m, 0
Chapter 9 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 9.1 - Light carries momentum, so if a light beam strikes...Ch. 9.1 - Prob. 1BECh. 9.2 - A 50-kg child runs off a dock at 2.0 m/s...Ch. 9.2 - In Example 93, what result would you get if (a)...Ch. 9.2 - Return to the Chapter-Opening Questions, page 214,...Ch. 9.8 - Calculate the CM of the three people in Example...Ch. 9.8 - Prob. 1GECh. 9.9 - A woman stands up in a rowboat and walks from one...Ch. 9 - We claim that momentum is conserved. Yet most...Ch. 9 - Two blocks of mass m1, and m2 rest on a...
Ch. 9 - A light object and a heavy object have the same...Ch. 9 - When a person jumps from a tree to the ground,...Ch. 9 - Explain, on the basis of conservation of momentum,...Ch. 9 - Two children float motionlessly in a space...Ch. 9 - A truck going 15 km/h has a head-on collision with...Ch. 9 - If a falling ball were to make a perfectly elastic...Ch. 9 - Prob. 9QCh. 9 - It is said that in ancient times a rich man with a...Ch. 9 - The speed of a tennis ball on the return of a...Ch. 9 - Is it possible for an object to receive a larger...Ch. 9 - How could a force give zero impulse over a nonzero...Ch. 9 - In a collision between two cars, which would you...Ch. 9 - A superball is dropped from a height h onto a hard...Ch. 9 - Prob. 16QCh. 9 - At a hydroelectric power plant, water is directed...Ch. 9 - A squash hall hits a wall at a 45 angle as shown...Ch. 9 - Why can a batter hit a pitched baseball farther...Ch. 9 - Describe a collision in which all kinetic energy...Ch. 9 - Inelastic and elastic collisions are similar in...Ch. 9 - If a 20-passenger plane is not full, sometimes...Ch. 9 - Prob. 23QCh. 9 - Why is the CM of a 1-m length of pipe at its...Ch. 9 - Show on a diagram how your CM shifts when you move...Ch. 9 - Describe an analytic way of determining the CM of...Ch. 9 - Place yourself facing the edge of an open door....Ch. 9 - If only an external force can change the momentum...Ch. 9 - A rocket following a parabolic path through the...Ch. 9 - How can a rocket change direction when it is far...Ch. 9 - In observations of nuclear -decay, the electron...Ch. 9 - Bob and Jim decide to play tug-of-war on a...Ch. 9 - At a carnival game you try to knock over a heavy...Ch. 9 - (I) Calculate the force exerted on a rocket when...Ch. 9 - (I) A constant friction force of 25 N acts on a...Ch. 9 - (II) The momentum of a particle, in SI units, is...Ch. 9 - (II) The force on a panicle of mass m is given by...Ch. 9 - (II) A 145-g baseball, moving along the x axis...Ch. 9 - (II) A 0.145-kg baseball pitched horizontally at...Ch. 9 - (II) A rocket of total mass 3180 kg is traveling...Ch. 9 - (III) Air in a 120-km/h wind strikes head-on the...Ch. 9 - (I) A 7700-kg boxcar traveling 18 m/s strikes a...Ch. 9 - (I) A 9150-kg railroad car travels alone on a...Ch. 9 - (I) An atomic nucleus at rest decays radioactively...Ch. 9 - (I) A 130-kg tackler moving at 2.5 m/s meets...Ch. 9 - (II) A child in a boat throws a 5.70-kg package...Ch. 9 - (II) An atomic nucleus initially moving at 420 m/s...Ch. 9 - (II) An object at rest is suddenly broken apart...Ch. 9 - (II) A 22-g bullet traveling 210 m/s penetrates a...Ch. 9 - (II) A rocket of mass m traveling with speed v0...Ch. 9 - (II) The decay of a neutron into a proton, an...Ch. 9 - A mass mA = 2.0 kg, moving with velocity...Ch. 9 - (II) A 925-kg two-stage rocket is traveling at a...Ch. 9 - (III) A 224-kg projectile, fired with a speed of...Ch. 9 - (I) A 0.145-kg baseball pitched at 35.0 m/s is hit...Ch. 9 - (II) A golf ball of mass 0.045 kg is hit off the...Ch. 9 - (II) A 12-kg hammer strikes a nail at a velocity...Ch. 9 - (II) A tennis ball of mass m = 0.060 kg and speed...Ch. 9 - (II) A 130-kg astronaut (including space suit)...Ch. 9 - (II) Rain is falling at the rate of 5.0 cm/h and...Ch. 9 - (II) Suppose the force acting on a tennis hall...Ch. 9 - (II) With what impulse does a 0.50-kg newspaper...Ch. 9 - (II) The force on a bullet is given by the formula...Ch. 9 - (II) (a) A molecule of mass m and speed v strikes...Ch. 9 - (III) (a) Calclale the impulse experienced when a...Ch. 9 - (III) A scale is adjusted so that when a large,...Ch. 9 - (II) A 0.060-kg tennis ball, moving with a speed...Ch. 9 - (II) A 0.450-kg hockey puck, moving east with a...Ch. 9 - (II) A 0.280-kg croquet ball makes an elastic...Ch. 9 - (II) A hall of mass 0.220 kg that is moving with a...Ch. 9 - (II) A ball of mass m makes a head-on elastic...Ch. 9 - (II) Determine the fraction of kinetic energy lost...Ch. 9 - (II) Show that, in general, for any head-on...Ch. 9 - (III) A 3.0 kg block slides along a frictionless...Ch. 9 - (I) In a ballistic pendulum experiment, projectile...Ch. 9 - (II) (a) Derive a formula for the fraction of...Ch. 9 - (II) A 28-g rifle bullet traveling 210 m/s buries...Ch. 9 - (II) An internal explosion breaks an object,...Ch. 9 - (II) A 920-kg spoils car collides into the rear...Ch. 9 - (II) You drop a 12-g ball from a height of 1.5 m...Ch. 9 - (II) Car A hits car B (initially at rest and of...Ch. 9 - (II) A measure of inelasticity in a head-on...Ch. 9 - (II) A pendulum consists of a mass M hanging at...Ch. 9 - (II) A build of mass m = 0.0010 kg embeds itself...Ch. 9 - (II) A 144-g baseball moving 28.0 m/s strikes a...Ch. 9 - (II) A 6.0-kg object moving in the +x direction at...Ch. 9 - (II) Billiard ball A of mass mA = 0.120 kg moving...Ch. 9 - (II) A radioactive nucleus at rest decays into a...Ch. 9 - (II) Two billiard balls of equal mass move at...Ch. 9 - (II) An atomic nucleus of mass m traveling with...Ch. 9 - (II) A neutron collides elastically with a helium...Ch. 9 - (III) A neon atom (m = 20.0 u) makes a perfectly...Ch. 9 - (III) For an elastic collision between a...Ch. 9 - (III) Prove that in the elastic collision of two...Ch. 9 - (I) The CM of an empty 1250-kg car is 2.50 m...Ch. 9 - (I) The distance between a carbon atom (m = 12 u)...Ch. 9 - (II) Three cubes, of side l0,2l0, and 3l0 are...Ch. 9 - (II) A square uniform raft, 18 m by 18 m, of mass...Ch. 9 - (II) A uniform circular plate of radius 2R has a...Ch. 9 - (II) A uniform thin wire is bent into a semicircle...Ch. 9 - (II) Find the center of mass of the ammonia...Ch. 9 - (III) Determine the CM of a machine part that is a...Ch. 9 - (III) Determine the CM of a uniform pyramid that...Ch. 9 - (III) Determine the CM of a thin, uniform,...Ch. 9 - (II) Mass MA = 35 kg and mass MB = 25 kg. They...Ch. 9 - (II) The masses of the Earth and Moon are 5.98 ...Ch. 9 - (II) A mallet consists of a uniform cylindrical...Ch. 9 - (II) A 55-kg woman and a 72-kg man stand 10.0 m...Ch. 9 - (II) Suppose that in Example 918 (Fig. 932), mII =...Ch. 9 - (II) Two people, one of mass 85 kg and the other...Ch. 9 - (III) A 280-kg flatcar 25 m long is moving with a...Ch. 9 - (III) A huge balloon and its gondola, of mass M,...Ch. 9 - (II) A 3500-kg rocket is to be accelerated at 3.0...Ch. 9 - (II) Suppose the conveyor bell of Example 919 is...Ch. 9 - (II) The jet engine of an airplane takes in 120 kg...Ch. 9 - (II) A rocket traveling 1850 m/s away from the...Ch. 9 - (III) A sled filled with sand slides without...Ch. 9 - A novice pool player is faced with the corner...Ch. 9 - During a Chicago storm, winds can whip...Ch. 9 - A ball is dropped from a height of 1.50 m and...Ch. 9 - In order to convert a tough split in bowling, it...Ch. 9 - A gun fires a bullet vertically into a 1.40-kg...Ch. 9 - A hockey puck of mass 4 m has been rigged 10...Ch. 9 - For the completely inelastic collision of two...Ch. 9 - A 4800-kg open railroad car coasts along with a...Ch. 9 - Consider the railroad car of Problem 92, which is...Ch. 9 - Two blocks of mass mA and mB, resting on a...Ch. 9 - You have been hired as an expert witness in a...Ch. 9 - A meteor whose mass was about 2.0 108 kg struck...Ch. 9 - Two astronauts, one of mass 65 kg and the other 85...Ch. 9 - A 22-g bullet strikes and becomes embedded in a...Ch. 9 - Two balls, of masses mA = 45 g and mB = 65 g, are...Ch. 9 - A block of mass m = 2.20 kg slides down a 30.0...Ch. 9 - In Problem 100 (Fig. 953), what is the upper limit...Ch. 9 - After a completely inelastic collision between two...Ch. 9 - A 0.25-kg skeet (clay target) is fired at an angle...Ch. 9 - A massless spring with spring constant k is placed...Ch. 9 - The gravitational slingshot effect. Figure 955...Ch. 9 - Two bumper cars in an amusement park ride collide...Ch. 9 - In a physics lab, a cube slides down a...Ch. 9 - The space shuttle launches an 850-kg satellite by...Ch. 9 - You are the design engineer in charge of the...Ch. 9 - Astronomers estimate that a 2.0-km-wide asteroid...Ch. 9 - An astronaut of mass 210 kg including his suit and...Ch. 9 - An extrasolar planet can be detected by observing...Ch. 9 - Suppose two asteroids strike head on. Asteroid A...Ch. 9 - (III) A particle of mass mA traveling with speed...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An ideal gas is made to undergo the cyclic process shown in Figure 1.10 (a). For each of the steps A, B, and C,...
An Introduction to Thermal Physics
If you have ever watched the launching of an Earth satellite, you may have noticed that the rocket starts verti...
Conceptual Integrated Science
75. Figure P18.75 shows a meter stick held lengthwise along the optical axis of a concave mirror. How long is t...
College Physics: A Strategic Approach (3rd Edition)
35. The first and second formants when you make an “ee” vowel sound are approximately 270 Hz and 2300 Hz. The s...
College Physics: A Strategic Approach (4th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following is not true dur...
The Cosmic Perspective Fundamentals (2nd Edition)
24. The 1.0 kg block in FIGURE EX7.24 is tied to the wall with a rope. It sits on top of the 2.0 kg block. The ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spaceship of mass 800,000 kg at a distance of 50,000 km above Earth's surface is accelerating away from Earth at 7.5 m/s^2. If it ion engines expel a plasma gas at a speed of 2000 km/s, at what rate must it consume fuel to achieve this acceleration?arrow_forwardA particle of mass 100gm was fired from the origin with an initial velocity of 2cm/s. Calculate the maximum distance that it travels to stop when exposed to an obstructive force, given by F = -2v^(3//2) ?arrow_forwardNeed help Consider two planetary embryos of chondritic material with radii of 500 km each. Calculate the speed at which the collision between them would destroy them. At that speed, what is the energy generated by the collision?arrow_forward
- Show that the kinetic energy of a system of particles is equal to the kinetic energy of the total mass of the system concentrated at the COM plus the kinetic energy of motion about the COM.arrow_forward14–83. A rocket of mass m is fired vertically from the surface of the earth, i.e., atr = r. Assuming that no mass is lost as it travels upward, determine the work it must do against gravity to reach a distance n. The force of gravity is F = GM,m/² (Eq. 13–1), where M is the mass of the earth and r the distance between the rocket and the center of the earth.arrow_forwardCalculate the mass if F = (40, 10) N and a = (0.4, 0.1) m/s2. Enter 0 if there exists no answer.arrow_forward
- Masses m and 2m approach each other at the same speed, v, and collide head-on. Find the final speed of mass 2m if mass m rebounds at speed 2v.arrow_forwardMass M, moving at speed 2V, approaches mass 4M, moving at speed V. The two collide elastically head-on. Find the expressions for their subsequent speeds.arrow_forward(a) Show that when p is held fixed, the Binomial distribution tends to a normal distribution as N is increased to infinity.arrow_forward
- a) Compare the average kinetic energy K;TRT of air molecules to the difference in gravitational energies, AU = mgz, at the top and bottom of a room, of height z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air in the room fall to the floor? What could you do to make it fall? b) This time calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the ground and if so, why?arrow_forward14-7. As indicated by the derivation, the principle of work and energy is valid for observers in any inertial reference frame. Show that this is so, by considering the 10-kg block which rests on the smooth surface and is subjected to a horizontal force of 6 N. If observer A is in a fixed frame x, determine the final speed of the block if it has an initial speed of 5 m/s and travels 10 m, both directed to the right and measured from the fixed frame. Compare the result with that obtained by an observer B, attached to the x' axis and moving at a constant velocity of 2 m/s relative to A. Hint: The distance the block travels will first have to be computed for observer B before applying the principle of work and energy. A х 2 m/s 5 m/s 6 N. 10 marrow_forwardIt released a particle with a mass of U 250gm from the origin with an initial velocity of 4cm/s. Calculate the maximum distance it travels until it stops being subjected to the blocking force F=-3v^(-3/2) (Write the answer a number only up to three places after sorting)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY