Intermediate Algebra
10th Edition
ISBN: 9781305191495
Author: Jerome E. Kaufmann; Karen L. Schwitters
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.CM, Problem 38CM
To determine
To find:
The solution of the given equation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(c) Let
6
0 0
A =
-10 4 8
5 1 2
(i) Find the characteristic polynomial of A and factorise it.
(ii) Determine all eigenvalues of A and find bases for the corresponding
eigenspaces.
(iii) Is A diagonalisable? Give reasons for your answer.
most 2, and let
Let P2 denote the vector space of polynomials of degree at
D: P2➡ P2
be the transformation that sends a polynomial p(t) = at² + bt+c in P2 to its derivative
p'(t)
2at+b, that is,
D(p) = p'.
(a) Prove that D is a linear transformation.
(b) Find a basis for the kernel ker(D) of the linear transformation D and compute its
nullity.
(c) Find a basis for the image im(D) of the linear transformation D and compute its
rank.
(d) Verify that the Rank-Nullity Theorem holds for the linear transformation D.
(e) Find the matrix representation of D in the standard basis (1,t, t2) of P2.
(c) Let
A =
-1 3
-4 12
3
3
-9
(i) Find bases for row(A), col(A) and N(A).
(ii) Determine the rank and nullity of A, and verify that the Rank-Nullity
Theorem holds for the above matrix A.
Chapter 8 Solutions
Intermediate Algebra
Ch. 8.1 - For Problems 110, answer true or false. The graph...Ch. 8.1 - Prob. 2CQCh. 8.1 - Prob. 3CQCh. 8.1 - Prob. 4CQCh. 8.1 - Prob. 5CQCh. 8.1 - Prob. 6CQCh. 8.1 - Prob. 7CQCh. 8.1 - Prob. 8CQCh. 8.1 - Prob. 9CQCh. 8.1 - Prob. 10CQ
Ch. 8.1 - Prob. 1PSCh. 8.1 - Prob. 2PSCh. 8.1 - Prob. 3PSCh. 8.1 - Prob. 4PSCh. 8.1 - Prob. 5PSCh. 8.1 - Prob. 6PSCh. 8.1 - Prob. 7PSCh. 8.1 - Prob. 8PSCh. 8.1 - Prob. 9PSCh. 8.1 - Prob. 10PSCh. 8.1 - Prob. 11PSCh. 8.1 - Prob. 12PSCh. 8.1 - Prob. 13PSCh. 8.1 - Prob. 14PSCh. 8.1 - Prob. 15PSCh. 8.1 - Prob. 16PSCh. 8.1 - Prob. 17PSCh. 8.1 - Prob. 18PSCh. 8.1 - Prob. 19PSCh. 8.1 - Prob. 20PSCh. 8.1 - Prob. 21PSCh. 8.1 - Prob. 22PSCh. 8.1 - Prob. 23PSCh. 8.1 - Prob. 24PSCh. 8.1 - Prob. 25PSCh. 8.1 - Prob. 26PSCh. 8.1 - Prob. 27PSCh. 8.1 - Prob. 28PSCh. 8.1 - Prob. 29PSCh. 8.1 - Prob. 30PSCh. 8.1 - Prob. 31PSCh. 8.1 - Prob. 32PSCh. 8.1 - Prob. 33PSCh. 8.1 - Prob. 34PSCh. 8.1 - Prob. 35PSCh. 8.1 - Prob. 36PSCh. 8.1 - Prob. 37PSCh. 8.1 - Prob. 38PSCh. 8.1 - Prob. 39PSCh. 8.2 - Prob. 1CQCh. 8.2 - Prob. 2CQCh. 8.2 - Prob. 3CQCh. 8.2 - Prob. 4CQCh. 8.2 - Prob. 5CQCh. 8.2 - Prob. 6CQCh. 8.2 - Prob. 7CQCh. 8.2 - Prob. 8CQCh. 8.2 - Prob. 9CQCh. 8.2 - Prob. 10CQCh. 8.2 - Prob. 1PSCh. 8.2 - Prob. 2PSCh. 8.2 - Prob. 3PSCh. 8.2 - Prob. 4PSCh. 8.2 - Prob. 5PSCh. 8.2 - Prob. 6PSCh. 8.2 - Prob. 7PSCh. 8.2 - Prob. 8PSCh. 8.2 - Prob. 9PSCh. 8.2 - Prob. 10PSCh. 8.2 - Prob. 11PSCh. 8.2 - Prob. 12PSCh. 8.2 - Prob. 13PSCh. 8.2 - Prob. 14PSCh. 8.2 - Prob. 15PSCh. 8.2 - Prob. 16PSCh. 8.2 - Prob. 17PSCh. 8.2 - Prob. 18PSCh. 8.2 - Prob. 19PSCh. 8.2 - Prob. 20PSCh. 8.2 - Prob. 21PSCh. 8.2 - Prob. 22PSCh. 8.2 - Prob. 23PSCh. 8.2 - Prob. 24PSCh. 8.2 - Prob. 25PSCh. 8.2 - Prob. 26PSCh. 8.2 - Prob. 27PSCh. 8.2 - Prob. 28PSCh. 8.2 - Prob. 29PSCh. 8.2 - Prob. 30PSCh. 8.2 - Prob. 31PSCh. 8.2 - Prob. 32PSCh. 8.2 - Prob. 33PSCh. 8.2 - Prob. 34PSCh. 8.2 - Prob. 35PSCh. 8.2 - Prob. 36PSCh. 8.2 - Prob. 37PSCh. 8.2 - Prob. 38PSCh. 8.2 - Prob. 39PSCh. 8.2 - Prob. 40PSCh. 8.2 - Prob. 41PSCh. 8.2 - Prob. 42PSCh. 8.2 - Prob. 43PSCh. 8.2 - Prob. 44PSCh. 8.2 - Prob. 45PSCh. 8.2 - Prob. 46PSCh. 8.2 - Prob. 47PSCh. 8.2 - Prob. 48PSCh. 8.2 - Prob. 49PSCh. 8.2 - Prob. 50PSCh. 8.2 - Prob. 51PSCh. 8.2 - Prob. 52PSCh. 8.2 - Prob. 53PSCh. 8.2 - Prob. 54PSCh. 8.2 - Prob. 55PSCh. 8.2 - Prob. 56PSCh. 8.2 - Prob. 57PSCh. 8.2 - Prob. 58PSCh. 8.2 - Prob. 59PSCh. 8.2 - Prob. 60PSCh. 8.2 - Prob. 61PSCh. 8.2 - Prob. 62PSCh. 8.2 - Prob. 63.1PSCh. 8.2 - By expanding (xh)2+(yk)2=r2, we obtain...Ch. 8.2 - Prob. 63.3PSCh. 8.2 - Prob. 63.4PSCh. 8.2 - Prob. 63.5PSCh. 8.2 - Prob. 63.6PSCh. 8.2 - Prob. 64PSCh. 8.2 - Prob. 65PSCh. 8.2 - Prob. 66.1PSCh. 8.2 - Prob. 66.2PSCh. 8.2 - Prob. 66.3PSCh. 8.2 - Prob. 66.4PSCh. 8.2 - Prob. 66.5PSCh. 8.2 - Prob. 66.6PSCh. 8.3 - Prob. 1CQCh. 8.3 - Prob. 2CQCh. 8.3 - Prob. 3CQCh. 8.3 - Prob. 4CQCh. 8.3 - Prob. 5CQCh. 8.3 - Prob. 6CQCh. 8.3 - Prob. 7CQCh. 8.3 - Prob. 8CQCh. 8.3 - Prob. 9CQCh. 8.3 - Prob. 10CQCh. 8.3 - Prob. 1PSCh. 8.3 - Prob. 2PSCh. 8.3 - Prob. 3PSCh. 8.3 - Prob. 4PSCh. 8.3 - Prob. 5PSCh. 8.3 - Prob. 6PSCh. 8.3 - Prob. 7PSCh. 8.3 - Prob. 8PSCh. 8.3 - Prob. 9PSCh. 8.3 - Prob. 10PSCh. 8.3 - Prob. 11PSCh. 8.3 - Prob. 12PSCh. 8.3 - Prob. 13PSCh. 8.3 - Prob. 14PSCh. 8.3 - Prob. 15PSCh. 8.3 - Prob. 16PSCh. 8.3 - Prob. 17PSCh. 8.3 - Prob. 18PSCh. 8.3 - Prob. 19PSCh. 8.3 - Prob. 20PSCh. 8.3 - Prob. 21PSCh. 8.3 - Prob. 22PSCh. 8.3 - Prob. 23PSCh. 8.3 - Prob. 24PSCh. 8.3 - Prob. 25PSCh. 8.3 - Prob. 26PSCh. 8.3 - Prob. 27PSCh. 8.3 - Prob. 28PSCh. 8.3 - Prob. 29PSCh. 8.3 - Prob. 30PSCh. 8.4 - Prob. 1CQCh. 8.4 - Prob. 2CQCh. 8.4 - Prob. 3CQCh. 8.4 - Prob. 4CQCh. 8.4 - Prob. 5CQCh. 8.4 - Prob. 6CQCh. 8.4 - Prob. 7CQCh. 8.4 - Prob. 8CQCh. 8.4 - Prob. 9CQCh. 8.4 - Prob. 10CQCh. 8.4 - Prob. 1PSCh. 8.4 - Prob. 2PSCh. 8.4 - Prob. 3PSCh. 8.4 - Prob. 4PSCh. 8.4 - Prob. 5PSCh. 8.4 - Prob. 6PSCh. 8.4 - Prob. 7PSCh. 8.4 - Prob. 8PSCh. 8.4 - Prob. 9PSCh. 8.4 - Prob. 10PSCh. 8.4 - Prob. 11PSCh. 8.4 - Prob. 12PSCh. 8.4 - Prob. 13PSCh. 8.4 - Prob. 14PSCh. 8.4 - Prob. 15PSCh. 8.4 - Prob. 16PSCh. 8.4 - Prob. 17PSCh. 8.4 - Prob. 18PSCh. 8.4 - Prob. 19PSCh. 8.4 - Prob. 20PSCh. 8.4 - Prob. 21PSCh. 8.4 - Prob. 22PSCh. 8.4 - Prob. 23PSCh. 8.4 - Prob. 24PSCh. 8.4 - Prob. 25PSCh. 8.4 - Prob. 26PSCh. 8.4 - Prob. 27PSCh. 8.4 - Prob. 28PSCh. 8.4 - Prob. 29PSCh. 8.4 - Prob. 30PSCh. 8.4 - Prob. 31PSCh. 8.4 - Prob. 32PSCh. 8.4 - Prob. 33PSCh. 8.4 - Prob. 34PSCh. 8.4 - Prob. 35PSCh. 8.4 - Prob. 36PSCh. 8.4 - Prob. 37PSCh. 8.4 - Prob. 38PSCh. 8.4 - Prob. 39PSCh. 8.4 - Prob. 40.1PSCh. 8.4 - Prob. 40.2PSCh. 8.4 - Prob. 40.3PSCh. 8.4 - Prob. 40.4PSCh. 8.4 - Prob. 40.5PSCh. 8.4 - Prob. 40.6PSCh. 8.4 - Prob. 41.1PSCh. 8.4 - Prob. 41.2PSCh. 8.4 - Prob. 41.3PSCh. 8.4 - Prob. 41.4PSCh. 8.4 - Prob. 41.5PSCh. 8.4 - Prob. 41.6PSCh. 8.4 - Prob. 41.7PSCh. 8.4 - Prob. 41.8PSCh. 8.4 - Prob. 41.9PSCh. 8.4 - Prob. 41.10PSCh. 8.4 - Prob. 42PSCh. 8.S - Prob. 1SCh. 8.S - Prob. 2SCh. 8.S - Prob. 3SCh. 8.S - Prob. 4SCh. 8.S - Prob. 5SCh. 8.S - Prob. 6SCh. 8.S - Prob. 7SCh. 8.S - Prob. 8SCh. 8.CR - Prob. 1CRCh. 8.CR - Prob. 2CRCh. 8.CR - Prob. 3CRCh. 8.CR - Prob. 4CRCh. 8.CR - Prob. 5CRCh. 8.CR - Prob. 6CRCh. 8.CR - Prob. 7CRCh. 8.CR - Prob. 8CRCh. 8.CR - Prob. 9CRCh. 8.CR - Prob. 10CRCh. 8.CR - Prob. 11CRCh. 8.CR - Prob. 12CRCh. 8.CR - Prob. 13CRCh. 8.CR - Prob. 14CRCh. 8.CR - Prob. 15CRCh. 8.CR - Prob. 16CRCh. 8.CR - Prob. 17CRCh. 8.CR - Prob. 18CRCh. 8.CR - Prob. 19CRCh. 8.CR - Prob. 20CRCh. 8.CR - Prob. 21CRCh. 8.CR - Prob. 22CRCh. 8.CR - Prob. 23CRCh. 8.CR - Prob. 24CRCh. 8.CR - Prob. 25CRCh. 8.CR - Prob. 26CRCh. 8.CR - Prob. 27CRCh. 8.CR - Prob. 28CRCh. 8.CR - Prob. 29CRCh. 8.CR - Prob. 30CRCh. 8.CR - Prob. 31CRCh. 8.CR - Prob. 32CRCh. 8.CR - Prob. 33CRCh. 8.CR - For Problems 3150, graph each equation....Ch. 8.CR - Prob. 35CRCh. 8.CR - Prob. 36CRCh. 8.CR - Prob. 37CRCh. 8.CR - Prob. 38CRCh. 8.CR - Prob. 39CRCh. 8.CR - Prob. 40CRCh. 8.CR - Prob. 41CRCh. 8.CR - Prob. 42CRCh. 8.CR - Prob. 43CRCh. 8.CR - Prob. 44CRCh. 8.CR - Prob. 45CRCh. 8.CR - Prob. 46CRCh. 8.CR - Prob. 47CRCh. 8.CR - Prob. 48CRCh. 8.CR - Prob. 49CRCh. 8.CR - Prob. 50CRCh. 8.CT - Prob. 1CTCh. 8.CT - Prob. 2CTCh. 8.CT - Prob. 3CTCh. 8.CT - Prob. 4CTCh. 8.CT - Prob. 5CTCh. 8.CT - Prob. 6CTCh. 8.CT - Prob. 7CTCh. 8.CT - Prob. 12CTCh. 8.CT - Prob. 13CTCh. 8.CT - Prob. 14CTCh. 8.CT - Prob. 15CTCh. 8.CT - Prob. 16CTCh. 8.CT - Prob. 17CTCh. 8.CT - Prob. 18CTCh. 8.CT - Prob. 19CTCh. 8.CT - Prob. 20CTCh. 8.CT - Prob. 21CTCh. 8.CT - Prob. 22CTCh. 8.CT - Prob. 23CTCh. 8.CT - Prob. 24CTCh. 8.CT - Prob. 25CTCh. 8.CM - Prob. 1CMCh. 8.CM - Prob. 2CMCh. 8.CM - Prob. 3CMCh. 8.CM - Prob. 4CMCh. 8.CM - Prob. 5CMCh. 8.CM - Prob. 6CMCh. 8.CM - Prob. 7CMCh. 8.CM - Prob. 8CMCh. 8.CM - Prob. 9CMCh. 8.CM - Prob. 10CMCh. 8.CM - Prob. 11CMCh. 8.CM - Prob. 12CMCh. 8.CM - Prob. 13CMCh. 8.CM - Prob. 14CMCh. 8.CM - Prob. 15CMCh. 8.CM - Prob. 16CMCh. 8.CM - Prob. 17CMCh. 8.CM - Prob. 18CMCh. 8.CM - Prob. 19CMCh. 8.CM - Prob. 20CMCh. 8.CM - Prob. 21CMCh. 8.CM - Prob. 22CMCh. 8.CM - Prob. 23CMCh. 8.CM - Prob. 24CMCh. 8.CM - Prob. 25CMCh. 8.CM - Prob. 26CMCh. 8.CM - Prob. 27CMCh. 8.CM - Prob. 28CMCh. 8.CM - Prob. 29CMCh. 8.CM - Prob. 30CMCh. 8.CM - Prob. 31CMCh. 8.CM - Prob. 32CMCh. 8.CM - Prob. 33CMCh. 8.CM - Prob. 34CMCh. 8.CM - Prob. 35CMCh. 8.CM - Prob. 36CMCh. 8.CM - Prob. 37CMCh. 8.CM - Prob. 38CMCh. 8.CM - Prob. 39CMCh. 8.CM - Prob. 40CMCh. 8.CM - Prob. 41CMCh. 8.CM - Prob. 42CMCh. 8.CM - Prob. 43CMCh. 8.CM - Prob. 44CMCh. 8.CM - Prob. 45CMCh. 8.CM - Prob. 46CMCh. 8.CM - Prob. 47CMCh. 8.CM - Prob. 48CMCh. 8.CM - Prob. 49CMCh. 8.CM - Prob. 50CMCh. 8.CM - Prob. 51CMCh. 8.CM - Prob. 52CMCh. 8.CM - Prob. 53CMCh. 8.CM - Prob. 54CMCh. 8.CM - Prob. 55CMCh. 8.CM - Prob. 56CMCh. 8.CM - For Problems 5564, solve inequality and express...Ch. 8.CM - Prob. 58CMCh. 8.CM - Prob. 59CMCh. 8.CM - Prob. 60CMCh. 8.CM - Prob. 61CMCh. 8.CM - Prob. 62CMCh. 8.CM - Prob. 63CMCh. 8.CM - Prob. 64CMCh. 8.CM - Prob. 65CMCh. 8.CM - For Problems 65-70, graph the following equations....Ch. 8.CM - Prob. 67CMCh. 8.CM - Prob. 68CMCh. 8.CM - Prob. 69CMCh. 8.CM - Prob. 70CMCh. 8.CM - Prob. 71CMCh. 8.CM - Prob. 72CMCh. 8.CM - Prob. 73CMCh. 8.CM - Prob. 74CMCh. 8.CM - Prob. 75CMCh. 8.CM - Prob. 76CMCh. 8.CM - Prob. 77CMCh. 8.CM - Prob. 78CMCh. 8.CM - Prob. 79CMCh. 8.CM - Prob. 80CMCh. 8.CM - Prob. 81CMCh. 8.CM - Prob. 82CMCh. 8.CM - Prob. 83CMCh. 8.CM - Prob. 84CMCh. 8.CM - Prob. 85CMCh. 8.CM - Prob. 86CMCh. 8.CM - Prob. 87CMCh. 8.CM - Prob. 88CM
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- -(0)-(0)-(0) X1 = x2 = x3 = 1 (a) Show that the vectors X1, X2, X3 form a basis for R³. y= (b) Find the coordinate vector [y] B of y in the basis B = (x1, x2, x3).arrow_forwardLet A 1 - 13 (1³ ³) 3). (i) Compute A2, A3, A4. (ii) Show that A is invertible and find A-¹.arrow_forwardLet H = {(a a12 a21 a22, | a1 + a2 = 0} . € R²x²: a11 + a22 (i) Show that H is a subspace of R2×2 (ii) Find a basis of H and determine dim H.arrow_forward
- 2 5 A=1 2 -2 b=2 3 1 -1 3 (a) Calculate det(A). (b) Using (a), deduce that the system Ax = b where x = (x1, x2, x3) is consistent and determine x2 using Cramer's rule.arrow_forwardConsider the least squares problem Ax = b, where 12 -09-0 A 1 3 1 4 and b = (a) Write down the corresponding normal equations. (b) Determine the set of least squares solutions to the problem.arrow_forwardThe function f(x) is represented by the equation, f(x) = x³ + 8x² + x − 42. Part A: Does f(x) have zeros located at -7, 2, -3? Explain without using technology and show all work. Part B: Describe the end behavior of f(x) without using technology.arrow_forward
- How does the graph of f(x) = (x − 9)4 – 3 compare to the parent function g(x) = x²?arrow_forwardFind the x-intercepts and the y-intercept of the graph of f(x) = (x − 5)(x − 2)(x − 1) without using technology. Show all work.arrow_forwardIn a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020. Part A: Find the vertex of V(x). Show all work. Part B: Interpret what the vertex means in terms of the value of the home.arrow_forward
- Show all work to solve 3x² + 5x - 2 = 0.arrow_forwardTwo functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it. f(x) h(x) 21 5 4+ 3 f(x) = −2(x − 4)² +2 + -5 -4-3-2-1 1 2 3 4 5 -1 -2 -3 5arrow_forwardThe functions f(x) = (x + 1)² - 2 and g(x) = (x-2)² + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,