Using and Understanding Mathematics: A Quantitative Reasoning Approach plus NEW MyMathLab with Pearson eText -- Access Card Package (6th Edition) (Bennett Science & Math Titles)
6th Edition
ISBN: 9780321923219
Author: Jeffrey O. Bennett, William L. Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.B, Problem 66E
To determine
Find growth rates, doubling times, and population projections tabulated for different countries. Select several countries from several continents, and record relevant growth data. Comment on whether the doubling times and growth rates are consistent. Discuss how these data how these data are used to make population projections.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
9 AB is parallel to plane m and perpendicular to plane r. CD lies
in r. Which of the following must be true?
arim
br m
6 CD L m
d AB || CD
e AB and CD are skew.
a. A company is offering a job with a
salary of $35,000 for the first year and a
3% raise each year after that. If the 3%
raise continues every year, find the
amount of money you would earn in a
40-year career.
(6) Prove that the image of a polygon in R², under an isometry, is congruent to the
original polygon.
Chapter 8 Solutions
Using and Understanding Mathematics: A Quantitative Reasoning Approach plus NEW MyMathLab with Pearson eText -- Access Card Package (6th Edition) (Bennett Science & Math Titles)
Ch. 8.A - Prob. 1QQCh. 8.A - Prob. 2QQCh. 8.A - The balance owed your credit card doubles from...Ch. 8.A - The number Of songs in your iPod has increased...Ch. 8.A - Which of the following is in example of...Ch. 8.A - On a chessboard with 64 squares, you place 1 penny...Ch. 8.A - At 11:00 you place a single bacterium in a bottle,...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Which of the following is not true of any...
Ch. 8.A - Describe basic differences between linear growth...Ch. 8.A - 2. Briefly explain how repeated doublings...Ch. 8.A - Briefly summarize the Story Of the bacteria in the...Ch. 8.A - Explain the meaning Of the two key facts about...Ch. 8.A - Prob. 5ECh. 8.A - Suppose you had a magic hank account in which your...Ch. 8.A - A small town that grows exponentially can become a...Ch. 8.A - H. Human population has been growing exponentially...Ch. 8.A - Prob. 9ECh. 8.A - Prob. 10ECh. 8.A - Prob. 11ECh. 8.A - Prob. 12ECh. 8.A - Prob. 13ECh. 8.A - Prob. 14ECh. 8.A - Linear or Exponential? State whether the growth...Ch. 8.A - Prob. 16ECh. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Prob. 20ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Prob. 22ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - 29. Human Doubling. Human population in the year...Ch. 8.A - Doubling Time versus Initial Amount. a. Would you...Ch. 8.A - Facebook Users. The table shows the number of...Ch. 8.A - Prob. 32ECh. 8.A - Exponential Growth. Identify at least two news...Ch. 8.A - Prob. 34ECh. 8.A - Prob. 35ECh. 8.B - Prob. 1QQCh. 8.B - Prob. 2QQCh. 8.B - Which of the following is not a good approximation...Ch. 8.B - Prob. 4QQCh. 8.B - Radioactive tritium (hvdrogen-3) has a halt-life...Ch. 8.B - Radioactive uramum-235 has a hall-life of about...Ch. 8.B - Prob. 7QQCh. 8.B - log10108= a.100,000,000 b. 108 c.8Ch. 8.B - A rural popular ion decreases at a rate of 20% per...Ch. 8.B - Prob. 10QQCh. 8.B - What is a doubling tune? Suppose a population has...Ch. 8.B - Prob. 2ECh. 8.B - State the approximate doubting time formula and...Ch. 8.B - Prob. 4ECh. 8.B - Prob. 5ECh. 8.B - 6. State the approximate hall-life formula and the...Ch. 8.B - 7. Briefly describe exact doubling time and...Ch. 8.B - 8. Give an example in which it is important to use...Ch. 8.B - Our town is growing with a doubling time of 25...Ch. 8.B - Our town is growing at a rate of 7% per year, so...Ch. 8.B - A toxic chemical decays with a hall-life of 10...Ch. 8.B - The hall-life of plutomum-239 is about 24,000...Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 15ECh. 8.B - Prob. 16ECh. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 18ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 22ECh. 8.B - Prob. 23ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 25ECh. 8.B - Prob. 26ECh. 8.B - Prob. 27ECh. 8.B - Prob. 28ECh. 8.B - Prob. 29ECh. 8.B - Prob. 30ECh. 8.B - Prob. 31ECh. 8.B - Prob. 32ECh. 8.B - Prob. 33ECh. 8.B - Prob. 34ECh. 8.B - 31. Rabbits. A community of rabbits begins with an...Ch. 8.B - Prob. 36ECh. 8.B - Doubling Time Formula. Use the approximate...Ch. 8.B - Prob. 38ECh. 8.B - Prob. 39ECh. 8.B - Prob. 40ECh. 8.B - Prob. 41ECh. 8.B - Prob. 42ECh. 8.B - Prob. 43ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 45ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 47ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 49ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 51ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 53ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 55ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 57ECh. 8.B - 58. Nuclear Weapons. Thermonuclear weapons use...Ch. 8.B - Fossil Fuel Emissions. Total emissions of carbon...Ch. 8.B - Yucca Mountain. The U.S. government spent nearly...Ch. 8.B - Crime Rate. The homicide rate decreases at a rate...Ch. 8.B - 62. Drug Metabolism. A particular antibiotic is...Ch. 8.B - Atmospheric Pressure. The pressure of Earth's...Ch. 8.B - Prob. 64ECh. 8.B - 65. Radioactive Half-Life. Find a news story that...Ch. 8.B - Prob. 66ECh. 8.B - Prob. 67ECh. 8.B - Prob. 68ECh. 8.B - Prob. 69ECh. 8.C - Prob. 1QQCh. 8.C - Prob. 2QQCh. 8.C - The primary reason for the rapid growth of human...Ch. 8.C - The carrying capacity of the Earth is defined as...Ch. 8.C - Which of the billowing would cause estimates of...Ch. 8.C - 6. Recall the bacteria in a bottle example from...Ch. 8.C - When researchers project that human population...Ch. 8.C - Prob. 8QQCh. 8.C - Prob. 9QQCh. 8.C - Prob. 10QQCh. 8.C - Based on Figure 8.3, contrast the changes in human...Ch. 8.C - Prob. 2ECh. 8.C - Haw do today’s birth and death rates compare to...Ch. 8.C - Prob. 4ECh. 8.C - Prob. 5ECh. 8.C - What is overshot and collapse? Under what...Ch. 8.C - Prob. 7ECh. 8.C - 8. If birth rates fall more than death rates, the...Ch. 8.C - The carrying capacity of our planet depends only...Ch. 8.C - to rapid increases in computing technology, we...Ch. 8.C - In the wild, we always expect the population of...Ch. 8.C - Prob. 12ECh. 8.C - Prob. 13ECh. 8.C - Varying Growth Rates. Starting from a 2013...Ch. 8.C - Prob. 15ECh. 8.C - 13-16: Varying Growth Rates. Starting from a 2013...Ch. 8.C - Birth and Death Rates. The following table gives...Ch. 8.C - Prob. 18ECh. 8.C - Prob. 19ECh. 8.C - Prob. 20ECh. 8.C - 21. Logistic Growth. Consider a population that...Ch. 8.C - Logistic Growth. Consider a population that begins...Ch. 8.C - Prob. 23ECh. 8.C - Prob. 24ECh. 8.C - Prob. 25ECh. 8.C - Prob. 26ECh. 8.C - Prob. 27ECh. 8.C - Prob. 28ECh. 8.C - Prob. 29ECh. 8.C - Prob. 30ECh. 8.C - Prob. 31ECh. 8.C - Prob. 32ECh. 8.C - Prob. 33ECh. 8.C - Prob. 34.0ECh. 8.C - Prob. 34.1ECh. 8.C - Population Predictions. Find population...Ch. 8.C - Prob. 36ECh. 8.C - Prob. 37ECh. 8.C - Prob. 38ECh. 8.C - Prob. 39ECh. 8.D - The energy release of a magnitude 7 earthquake is...Ch. 8.D - Prob. 2QQCh. 8.D - 3. What is a 0-decibel sound?
the softest sound...Ch. 8.D - Prob. 4QQCh. 8.D - Prob. 5QQCh. 8.D - Prob. 6QQCh. 8.D - Prob. 7QQCh. 8.D - Prob. 8QQCh. 8.D - Prob. 9QQCh. 8.D - Prob. 10QQCh. 8.D - What is the magnitude scale for earthquakes? What...Ch. 8.D - What is the decibel scale? Describe how it is...Ch. 8.D - What is pH? What pH values define an acid, a base,...Ch. 8.D - What is acid rain? Why is it a serious...Ch. 8.D - 5. An earthquake of magnitude 8 will do twice as...Ch. 8.D - A 120-dB wand is 20% louder than a 100-dB sound.Ch. 8.D - If I double the amount of water in the cup, I'll...Ch. 8.D - The lake water was crystal clear, so It could not...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Prob. 10ECh. 8.D - Prob. 11ECh. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - 9-14: Earthquake Magnitudes. Use the earthquake...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - Prob. 20ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Prob. 22ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - The pH scale. Use the pH scale to answer the...Ch. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - Prob. 27ECh. 8.D - Prob. 28ECh. 8.D - Prob. 29ECh. 8.D - Prob. 30ECh. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - 25-32: The pH Scale. Use the pH scale to answer...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - 33-38: Logarithmic Thinking. Briefly describe, in...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Prob. 37ECh. 8.D - Prob. 38ECh. 8.D - 39. Sound and Distance.
The decibel level for...Ch. 8.D - 40. Variation in Sound with Distance. Suppose that...Ch. 8.D - Toxic Dumping in Acidified Lakes. Consider a...Ch. 8.D - Earthquakes in the News. Find a recent news story...Ch. 8.D - Prob. 43ECh. 8.D - Disasters. Find the death lolls for some of the...Ch. 8.D - Prob. 45E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The function f(x) is represented by the equation, f(x) = x³ + 8x² + x − 42. Part A: Does f(x) have zeros located at -7, 2, -3? Explain without using technology and show all work. Part B: Describe the end behavior of f(x) without using technology.arrow_forwardHow does the graph of f(x) = (x − 9)4 – 3 compare to the parent function g(x) = x²?arrow_forwardFind the x-intercepts and the y-intercept of the graph of f(x) = (x − 5)(x − 2)(x − 1) without using technology. Show all work.arrow_forward
- In a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020. Part A: Find the vertex of V(x). Show all work. Part B: Interpret what the vertex means in terms of the value of the home.arrow_forwardShow all work to solve 3x² + 5x - 2 = 0.arrow_forwardTwo functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it. f(x) h(x) 21 5 4+ 3 f(x) = −2(x − 4)² +2 + -5 -4-3-2-1 1 2 3 4 5 -1 -2 -3 5arrow_forward
- The functions f(x) = (x + 1)² - 2 and g(x) = (x-2)² + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning.arrow_forwardTotal marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forward
- Total marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License