Evaluating an Improper Integral In Exercises 33-48, determine whether the improper integraldiverges or converges. Evaluate the integral if itconverges, and check your results with the resultsobtained by using the integration capabilities of agraphing utility. ∫ 3 5 1 x 2 − 9 d x
Evaluating an Improper Integral In Exercises 33-48, determine whether the improper integraldiverges or converges. Evaluate the integral if itconverges, and check your results with the resultsobtained by using the integration capabilities of agraphing utility. ∫ 3 5 1 x 2 − 9 d x
Solution Summary: The author explains how to determine if the improper integral displaystyle 'int' converges or diverges.
Evaluating an Improper Integral In Exercises 33-48, determine whether the improper integraldiverges or converges. Evaluate the integral if itconverges, and check your results with the resultsobtained by using the integration capabilities of agraphing utility.
∫
3
5
1
x
2
−
9
d
x
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
answer
1. Given the vector field F(x, y, z) = -zi, verify the relation
1
VF(0,0,0) lim
+0+ volume inside S
ff F• Nds
S.
where S, is the surface enclosing a cube centred at the origin and having edges of length 2€. Then,
determine if the origin is sink or source.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.