Vibrating String A string stretched between the two points (0, 0) and (2, 0) is plucked by displacing the string h units at its midpoint. The motion of the string is modeled by a Fourier Sine Series whose coefficients are given by b n = h ∫ x sin n π x 2 d x + h ∫ 1 2 ( − x + 2 ) sin n π x 2 d x Find b n .
Vibrating String A string stretched between the two points (0, 0) and (2, 0) is plucked by displacing the string h units at its midpoint. The motion of the string is modeled by a Fourier Sine Series whose coefficients are given by b n = h ∫ x sin n π x 2 d x + h ∫ 1 2 ( − x + 2 ) sin n π x 2 d x Find b n .
Solution Summary: The author calculates the value of the coefficient b_n of a Fourier Sine Series.
Vibrating String A string stretched between the two points (0, 0) and (2, 0) is plucked by displacing the string h units at its midpoint. The motion of the string is modeled by a Fourier Sine Series whose coefficients are given by
b
n
=
h
∫
x
sin
n
π
x
2
d
x
+
h
∫
1
2
(
−
x
+
2
)
sin
n
π
x
2
d
x
Only 100% sure experts solve it correct complete solutions ok
rmine the immediate settlement for points A and B shown in
figure below knowing that Aq,-200kN/m², E-20000kN/m², u=0.5, Depth
of foundation (DF-0), thickness of layer below footing (H)=20m.
4m
B
2m
2m
A
2m
+
2m
4m
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.