Concept explainers
(a)
The final temperature in the cylinder at equilibrium condition.
(a)
Answer to Problem 107RP
The final temperature in the cylinder at equilibrium condition is
Explanation of Solution
Write the ideal gas equation to calculate the mass of the gas
Here, initial pressure of the gas is
Write the energy balance equation for the entire system considering it as a stationary closed system.
Here, net energy input to the system is
Conclusion:
Refer the Table A-1E of “Molar mass, gas constant, and critical-point properties”, obtain the gas constants of Nitrogen and Helium as
Refer the Table A-2E of “Ideal-gas specific heats of various common gases”, obtain the specific heats of Nitrogen, copper, and Helium as
Substitute
Substitute
Calculate the temperature of piston as the average temperature of nitrogen and helium
Substitute
Thus, the final temperature in the cylinder at equilibrium condition is
Final temperature at equilibrium condition is same even if the piston is restricted from moving.
(b)
The amount of wasted work potential for the process.
The amount of wasted work potential for the process when piston is restricted from moving.
(b)
Answer to Problem 107RP
The amount of wasted work potential for the process is
The amount of wasted work potential for the process when piston is restricted from moving is
Explanation of Solution
Write the expression to calculate the total number of moles in the cylinder
Write the expression to calculate the pressure from ideal gas expression.
Here, universal gas constant is
Write the entropy generation
Here, entropy input to the system is
Write the expression to calculate the exergy destroyed
Here, the surrounding’s temperature is
Write the formula to calculate the entropy generation when the piston is restricted to move.
Conclusion:
Refer the Table A-1E of “Molar mass, gas constant, and critical-point properties”, obtain the molar masses of Nitrogen and Helium as
Substitute
Substitute
Substitute
Substitute
Thus, the amount of wasted work potential for the process is
Substitute
Substitute
Thus, the amount of wasted work potential for the process when piston is restricted from moving is
Want to see more full solutions like this?
Chapter 8 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- A partition divides an insulated tank into two parts which are not equal. One part of the tank contains 5 kg of compressed liquid water at 65°C and 600 kPa while the other part is evacuated (Hint: For compressed liquids, if tables are not available, use properties of the saturated liquid at the specified temperature). The partition is then removed, and the water expands to fill the entire tank. Determine the final temperature of the water and the volume of the tank for a final pressure of 20 kPa.arrow_forwardA frictionless piston-cylinder device contains 0.25kg of saturated vapor refrigerant 134a at 200kPa. The refrigerant is heated by passing current through an electrical heated rated at 220V and 5 A for period of 30 Second. During the process 15 kJ of heat is transferred from the refrigerant to the surrounding air. Sketch the process on a T-v diagram and determine: The final temperature of the refrigerant, °C. The boundary work during the process, kJarrow_forwardProblem 3: A piston-cylinder device initially contains 1.2 kg of air at 700 kPa and 200 °C. At this state, the piston is touching on a pair of stops. The mass of the piston is such that 600-kPa pressure is required to move it. A valve at the bottom of the tank is opened, and air is withdrawn from the cylinder. The valve is closed when the volume of the cylinder decreases to 80 percent of the initial volume. If it is estimated that 40 kJ of heat is lost from the cylinder, determine (a) the final temperature of the air in the cylinder, (b) the amount of mass that has escaped from the cylinder, and (c) the work done. Use constant specific heats at the average temperature. Air 1.2 kg 700 kPa 200°C Qarrow_forward
- ASAParrow_forwardWhat happens when a saturated vapor is heated at constant pressure? What happens when it is compressed adiabatically?arrow_forwardTHERMOFLUID Air is contained in a cylinder device fitted with a piston-cylinder. The piston initially rests on a set of stops, and a pressure of 200 kPa is required to move the piston. Initially, the air is at 100 kPa and 23°C and occupies a volume of 0.25 m2. Determine the amount of heat transferred to the air, in KJ, while increasing the temperature to 700 K. Assume air has constant specific heats evaluated at 300 K.arrow_forward
- A 0.04-m3 tank initially contains air at ambient conditions of 100 kPa and 22°C. Now, a 17-L tank containing liquid water at 85°C is placed into the tank without causing any air to escape. After some heat transfer from the water to the air and the surroundings, both the air and water are measured to be at 44°C. Air, 22°C Water 85°C Determine the amount of heat lost to the surroundings. The gas constant of air is R= 0.287 kPa-m3/kg-K. Use the tables containing the ideal-gas specific heats of various common gases and the properties of common liquids, solids, and foods. (You must provide an answer before moving on to the next part.) The amount of heat lost to the surroundings is kJ.arrow_forwardA 0.5-m3 rigid tank contains nitrogen gas at 600 kPa and 300 K. Now the gas is compressed isothermally to a volume of 0.2 m3 . The work done on the gas during this compression process is (a) 82 kJ (b) 180 kJ (c) 240 kJ (d) 275 kJ (e) 315 kJarrow_forwardWhat is the new temperature (in K) of a closed gas system when it's volume is compressed from 5.6 L to 2.3 L and initial temperature was 455゚ Karrow_forward
- (1)Refrigerant R-134a that has an initial volume of 1220 L at 320 kPa with a quality of 91 percent is contained in a spring-loaded piston-cylinder device. This refrigerant is then heated until the pressure rises to 500 kPa and the temperature reaches 150°C. The total amount of heat transfer during this process is: (а) 3000 kJ (b) 3025 kJ (с) 3050 kJ (d) 3075 kJ (е) 3100 kJarrow_forwardA piston-cylinder device whose piston is resting on top of a set of stops initially contains 0.6 kg of helium gas at 100 kPa and 25°C. The mass of the piston is such that 500 kPa of pressure is required to raise it. How much heat must be transferred to helium before the piston starts rising? The specific heat of helium at room temperature is cy= 3.1156 kJ/kg-K (Table A-2). The amount of heat to be transferred to helium is kJ.arrow_forwardA 0.3-m3 rigid tank initially contains refrigerant- 134a at 14°C. At this state, 55 percent of the mass is in the vapor phase, and the rest is in the liquid phase. The tank is connected by a valve to a supply line where refrigerant at 1.4 MPa and 100°C flows steadily. Now the valve is opened slightly, and the refrigerant is allowed to enter the tank. When the pressure in the tank reaches 1 MPa, the entire refrigerant in the tank exists in the vapor phase only. At this point the valve is closed. Determine (a) the final temperature in the tank, (b) the mass of refrigerant that has entered the tank, and (c) the heat transfer between the system and the surroundings.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY