Concept explainers
A 180-lb farmer tries to restrain the cow from escaping by wrapping the rope two turns around the tree as shown. If the cow exerts a force of 250 lb on the rope, determine if the farmer can successfully restrain the cow. The coefficient of static friction between the rope and the tree trunk is, μs = 0.15, and between the farmer’s shoes and the ground, μ’s = 0.3.
Learn your wayIncludes step-by-step video
Chapter 8 Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Additional Engineering Textbook Solutions
Engineering Mechanics: Statics
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Engineering Mechanics: Statics & Dynamics (14th Edition)
Applied Fluid Mechanics (7th Edition)
- The 60-lb plank rests on a frictionless roller at A, and the 20-lb triangular support BD. Both bodies are homogenous. The coefficients of static friction are 0.4 at B and 0.3 at D. Determine the largest force P that can be applied to the plank without initiating motion.arrow_forwardTwo identical chairs, each weighing 14 lb, are stacked as shown. The center of gravity of each chair is denoted by G. The coefficient of static friction is 0.2 at B (the contact point between the chairs) and 0.35 at A, C, and D. Determine the smallest force P that would cause sliding.arrow_forwardThe brake pads at C and D are pressed against the cylinder by the spring BF. The coefficient of static friction between each pad and the cylinder is 0.15. Find the smallest tension in the spring that would prevent the cylinder from rotating when the clockwise couple M=2200lbin. is applied. Neglect the weights of the members.arrow_forward
- The two uniform sheets of plywood, each of length L and weight W, are propped as shown. If the coefficient of static friction is 0.5 at all three contact surfaces, determine whether the sheets will remain at rest.arrow_forwardFind the largest value of b/h at which the folding table is in equilibrium. The coefficients of static friction are 0.5 at A and 0.3 at C. Neglect the weight of the table.arrow_forwardThe 3600-lb car with rear Wheel drive is attempting to tow the 4500-lb crate. The center of gravity of the car is at G, and the coefficients of static friction are 0.6 at B and 0.2 at C. Determine if the crate will slide.arrow_forward
- Determine the Tension in the cable for the 250N block A not to slide down in the inclined plane. Given that the coefficient of static friction in the 45° inclined plane is 0.25 and in the 30° inclined plane is 0.3. (Assume frictionless pulley) Determine the tension on the cable for the 250N block A not to slide up in the inclined plane. Given that the coefficient of static friction in the 45° inclined plane is 0.25 and in the 30° inclined plane is 0.3. (Assume frictionless pulley)arrow_forwardThe 150 lb block rests on an inclined surfacevand is attached to a frictionless pulley C. The coefficient of static friction between the block and the incline is 0.25. The dope passes over a drum D, where the coefficient of static friction between the rope and the drum is 0.2, as shown. Find the minimum and maximum values for the weight of block B, Wb, for which no motion will occur. Neglect tipping.arrow_forwardThe coefficient of static friction between the 50-kg crate and the ramp is μs = 0.35. The unstretched length of the spring is 800 mm, and the spring constant is k = 660 N/m. Determine the following: 1 The normal force acting on the crate is Blank 1 N. 2 The friction force acting on the crate is Blank 2 N. 3 The minimum value of x at which the crate can remain stationary on the ramp is Blank 3 mm.arrow_forward
- A 182 lb man climbs up the ladder and stops at the position shown when he senses the ladder is on the verge of slipping. Determine the coefficient of static friction between the ladder and the ground at A if the angle theta is 60 degrees. The ladder has a negligible weight and the wall at B is smooth. 3 ft- G 10 ft Aarrow_forwardSix 5 N blocks are stacked vertically. The coefficient of static friction between the blocks is µs = 0.20. Determine the horizontal force that must be applied to the fifth block from the top of the stack, in order to slide it out without moving the other blocks.arrow_forwardDetermine the minimum force P to prevent the 30-kg rod AB from sliding. The contact surface at B is smooth, whereas the coefficient of static friction between the rod and the wall at A is = 0. - 4m -arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L