Choose your test Use the test of your choice to determine whether the following series converge.
45.
Trending nowThis is a popular solution!
Chapter 8 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
Calculus and Its Applications (11th Edition)
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Precalculus
Glencoe Math Accelerated, Student Edition
Precalculus (10th Edition)
- #15 state wether the series converges or diverges and what test used. ive tried many so any test that works will be okay.arrow_forward↑ Use an appropriate test to determine whether the following series converges. IM8 Σ 1 k=2 (k-1)4 Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer.) 00 A. The series diverges by the Integral Test. The value of S 1 Oc. The series diverges. It is a p-series with p = D. The series converges. It is a p-series with p = 2 (x-1) OB. The series diverges by the Divergence Test. The value of lim 1 k→∞ (k-1) dx is OE. The series converges by the Divergence Test. The value of lim 4 1 k→∞ (k-1) is 4 is COD layer/player.aspx?cultureld=&theme=math&style=highered&disableStandbyIndicator=true&assignmentHandles Locale=true# This question: 1 pointearrow_forwardBinomial seriesa. Find the first four nonzero terms of the binomial series centered at 0 for the given function.b. Use the first four terms of the series to approximate the given quantity.arrow_forward
- Find a power series representation for the function and determine the radius of convergence.arrow_forwardUsing the Direct Comparison Test or the Limit Comparison Test determine if the series converges or diverges.arrow_forwardFind the value of x for which the given geometric series converges.Also, find the sum of the series.arrow_forward
- Help me fast so that I will give Upvote.arrow_forward05* Let p, q> 0. Find the relation of p and q so that the following series is convergent. p>1 and p=1,q>1 p1 p1 and p=1, q<1 8 n=1 1 n²(Inn)arrow_forwardWe want to use the Alternating Series Test to determine if the series: Σ (-1)+2 k=4 converges or diverges. We can conclude that: k² √5 + 19 O The Alternating Series Test does not apply because the absolute value of the terms are not decreasing. O The Alternating Series Test does not apply because the absolute value of the terms do not approach 0, and the series diverges for the same reason. O The series diverges by the Alternating Series Test. O The Alternating Series Test does not apply because the terms of the series do not alternate. O The series converges by the Alternating Series Test.arrow_forward
- Decide whether each series converges absolutely, converges conditionally, or diverges. 00 The series (-1)r+8 ( (0.2)" ) 4n is ? n=1 (-1)" is ? The series 8 + Vn n= 00 The series is ? n=1arrow_forwardEvaluate the series or state that it diverges.arrow_forwardUse any method to determine if the series converges or diverges. Give reasons for your answer. (n+5)(n+2) n! n=1 Select the correct choice below and fill in the answer box to complete your choice. O A. The series converges because the limit used in the nth-Term Test is B. The series diverges because the limit used in the Ratio Test is Oc. The series converges because the limit used in the Ratio Test is OD. The series diverges because the limit used in the nth-Term Test isarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning