BEGINNING STATISTICS
BEGINNING STATISTICS
2nd Edition
ISBN: 9781941552513
Author: WARREN
Publisher: Hawkes Learning
Question
Book Icon
Chapter 8.5, Problem 24E
To determine

To build and to interpret:

A 98% confidence interval for the population variance for the weights of all boxes of crackers that come off the assembly line.

Expert Solution & Answer
Check Mark

Answer to Problem 24E

Solution:

The confidence interval for the population variance is given by (0.0019, 0.0128).

Thus, we are 98% confident that the population variance is between 0.0019 and 0.0128.

Explanation of Solution

Procedure:

Steps need to be followed while calculating the confidence interval.

STEP 1:

Find the point estimate, s2 for confidence interval for the population variance and s for confidence interval for the population standard deviation.

STEP 2:

Calculate σ2 and 1-σ2, based on the level of confidence c given.

STEP 3:

Find the critical value χσ22 and χ1-σ22 for the distribution with n-1 degrees of freedom using the χ2-distribution table.

STEP 4:

Find the confidence interval for the population variance by substituting the necessary values in the formula

n-1s2χσ22<σ2<n-1s2χ1-σ22

Find the confidence interval for the population standard deviation by substituting the necessary values in the formula

n-1s2χσ22<σ<n-1s2χ1-σ22

Calculation:

Level confidence =98%

First let us calculate the sample variance for the given data.

The sample variance of a data having ‘n’ number of data values in the sample with mean ‘x-’ is given by

s2=xi-x-2n-1

Here, we need to find the mean ‘x-

x-=xin

=16.87+16.92+17.01+16.98+16.99+16.92+16.91+17.00+                                    17.01+16.96+16.95+16.94+17.00+16.9214

x-=237.3814

x-=16.9557

x-=17

Now, construct a table of deviations and squared deviations of the data.

Deviations and squared Deviations of the data
xi xi-x¯ (xi-x¯)2
16.87 16.87-17=-0.13 0.0169
16.92 16.92-17=-0.08 0.0064
17.01 17.01-17=0.01 0.0001
16.98 16.98-17=-0.02 0.0004
16.99 16.99-17=-0.01 0.0001
16.92 16.92-17=-0.08 0.0064
16.91 16.91-17=-0.09 0.0081
17.00 17.00-17=0 0
17.01 17.01-17=0.01 0.0001
16.96 16.96-17=-0.04 0.0016
16.95 16.95-17=-0.05 0.0025
16.94 16.94-17=-0.06 0.0036
17.00 17.00-17=0 0
16.92 16.92-17=-0.08 0.0064

(xi-x¯)2=0.0526

Thus, we have

(xi-x¯)2=0.0526 (Squared deviation)

n=14 (Sample size)

Substituting the above values in

s2=xi-x-2n-1

     =0.052614-1

     =0.052613

s2=0.00405

Now, construct a confidence interval for the population variance with

n=14 (Sample size)

s2=0.00405 (Sample variance)

c=0.98 (Level of confidence)

STEP 1:

Find the point estimate:

Here, we need to construct the confidence interval for the population variance, thus the point estimate is the value of s2 and is given as s2=0.00405

STEP 2:

Calculate σ2 and 1-σ2, based on the level of confidence given, for the level of confidence given,

c=0.98

We have,

σ=1-c

σ=1-0.98

σ=0.02

Thus,

=σ2

=0.022

=0.01 and

1-σ2

=1-0.01

=0.99

STEP 3:

Find the critical value χσ22 and χ1-σ22 for the distribution with n-1 degrees of freedom using the χ2-distribution table,

=χσ22

=χ0.012

=27.69 and

χ1-σ22

=χ1-0.012

=χ0.992

=4.107

STEP 4:

Find the confidence interval by substituting the necessary values in the formula:

n-1s2χσ22<σ2<n-1s2χ1-σ22

14-10.0040527.69<σ2<14-10.004054.107

130.0040527.69<σ2<130.004054.107

0.0526527.69<σ2<0.052654.107

0.0019<σ2<0.0128

Using, interval notation, the confidence interval can also be written as (0.0019, 0.0128)

Final statement:

Therefore, the confidence interval for the population variance is given by (0.0019, 0.0128).

Thus, we are 98% confident that the population variance is between 0.0019 and 0.0128.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. Explain why the following statements are not correct. a. "With my methodological approach, I can reduce the Type I error with the given sample information without changing the Type II error." b. "I have already decided how much of the Type I error I am going to allow. A bigger sample will not change either the Type I or Type II error." C. "I can reduce the Type II error by making it difficult to reject the null hypothesis." d. "By making it easy to reject the null hypothesis, I am reducing the Type I error."
Given the following sample data values: 7, 12, 15, 9, 15, 13, 12, 10, 18,12 Find the following: a) Σ x= b) x² = c) x = n d) Median = e) Midrange x = (Enter a whole number) (Enter a whole number) (use one decimal place accuracy) (use one decimal place accuracy) (use one decimal place accuracy) f) the range= g) the variance, s² (Enter a whole number) f) Standard Deviation, s = (use one decimal place accuracy) Use the formula s² ·Σx² -(x)² n(n-1) nΣ x²-(x)² 2 Use the formula s = n(n-1) (use one decimal place accuracy)
Table of hours of television watched per week: 11 15 24 34 36 22 20 30 12 32 24 36 42 36 42 26 37 39 48 35 26 29 27 81276 40 54 47 KARKE 31 35 42 75 35 46 36 42 65 28 54 65 28 23 28 23669 34 43 35 36 16 19 19 28212 Using the data above, construct a frequency table according the following classes: Number of Hours Frequency Relative Frequency 10-19 20-29 |30-39 40-49 50-59 60-69 70-79 80-89 From the frequency table above, find a) the lower class limits b) the upper class limits c) the class width d) the class boundaries Statistics 300 Frequency Tables and Pictures of Data, page 2 Using your frequency table, construct a frequency and a relative frequency histogram labeling both axes.

Chapter 8 Solutions

BEGINNING STATISTICS

Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.3 - Prob. 1ECh. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.CR - Prob. 1CRCh. 8.CR - Prob. 2CRCh. 8.CR - Prob. 3CRCh. 8.CR - Prob. 4CRCh. 8.CR - Prob. 5CRCh. 8.CR - Prob. 6CRCh. 8.CR - Prob. 7CRCh. 8.CR - Prob. 8CRCh. 8.CR - Prob. 9CRCh. 8.CR - Prob. 10CRCh. 8.CR - Prob. 11CRCh. 8.CR - Prob. 12CRCh. 8.CR - Prob. 13CRCh. 8.PA - Prob. 1PCh. 8.PA - Prob. 2PCh. 8.PA - Prob. 3PCh. 8.PA - Prob. 4PCh. 8.PA - Prob. 5PCh. 8.PB - Prob. 1PCh. 8.PB - Prob. 2PCh. 8.PB - Prob. 3PCh. 8.PB - Prob. 4PCh. 8.PB - Prob. 5P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman