R outputs for Question 6. (1) Data input > library(tseries) > P = get. hist. quote (instrument = "GE", start="2021-01-01", + end= "2024-03-31", + quote = c("Adj Close"), provider = "yahoo", compression = "d") time series starts 2021-01-04 time series ends 2024-03-28 > r = diff (as.matrix (log(P))) >rna.omit(r) > length (r) [1] 813 > r[809:813] [1] -0.0085 -0.0095 0.0003 0.0372 -0.0258 (2) Model 1: ARCH (2) model with Student-t innovations > model = garchFit (~ garch (2,0),data=r, cond.dist="std", trace=FALSE) > summary (model) Title: GARCH Modelling Call: garchFit (formula = garch (2, 0), data = r, cond.dist = "std", trace = FALSE) Coefficient (s): mu omega alpha1 alpha2 shape 0.00222 0.00125 0.13373 0.28380 3.60533 Error Analysis: Estimate Std. Error t value Pr(>/t/) mu 0.00222 omega 0.00125 alpha1 0.13373 alpha2 0.28380 0.0770380 0.0008828 2.525 0.01156 * 0.0001510 8.285 2.22e-16 *** 0.0470310 2.843 0.00446 ** 3.684 0.00023 *** shape 3.60533 0.4081007 8.834 < 2e-16 *** Signif. codes: 0*** 0.001 ** 0.01 * 0.05 0.1 1 Log Likelihood: 2454.99 normalized: 1.86125 Standardised Residuals Tests: Statistic p-value Jarque-Bera Test R Chi-2 396.094 0 Shapiro-Wilk Test R W 0.96440 0 Ljung-Box Test R Q(10) 14.3254 0.158659 Ljung-Box Test R Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test LM Arch Test R Q(15) 19.718 Q(20) 29.618 0.18302 R 2 Q(10) 15.6807 R^2 Q(15) 34.3686 R^2 Q(20) 46.0913 R TR 2 24.3045 0.0762852 0.109145 0.00302187 0.000783077 0.018485 Information Criterion Statistics: AIC BIC SIC HQIC -3.71492 -3.69527 -3.71495 -3.70755 > model1@sigma.t[809:813] [1] 0.0188 0.0185 0.0186 0.0183 0.0209 > model1@residuals [809:813] [1] -0.0098 -0.0109 -0.0010 0.0358 -0.0272 (3) Model 2: GARCH(1, 1) model with Student-t innovations > model2 = garchFit (~ garch (1,1),data=r, cond.dist="std", trace=FALSE) > summary(model2) Title: GARCH Modelling Call: garchFit (formula = garch (1, 1), data = r, cond.dist = "std", trace = FALSE) Mean and Variance Equation: data garch (1, 1) [data = r] Conditional Distribution: std Coefficient (s): mu omega 1.6222e-03 alpha1 betal shape 6.5063e+00 1.9317e-06 2.1377e-02 9.7241e-01 Std. Errors: based on Hessian Error Analysis: mu Estimate 1.622e-03 Std. Error t value Pr(>|t|) 5.954e-04 omega 1.932e-06 2.093e-06 alpha1 2.138e-02 9.904e-03 2.724 0.00644 ** 0.923 0.35599 2.158 0.03090 * beta1 shape 6.506e+00 1.329e+00 9.724e-01 1.345e-02 72.312 <2e-16 *** 4.895 9.83e-07 *** Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 0.1 1 Log Likelihood: 2104.16 normalized: 2.58814 Standardised Residuals Tests: Statistic p-value Jarque-Bera Test R R W Chi-2 209.655 0 0.979421 2.75269e-09 Shapiro-Wilk Test Ljung-Box Test Ljung-Box Test Ljung-Box Test R Q(10) 13.0809 0.219186 R Q(15) 15.3775 0.42458 R Q(20) 21.8284 0.349893 Ljung-Box Test Ljung-Box Test Ljung-Box Test LM Arch Test R2 Q(10) 7.29837 0.697008 R^2 Q(15) 8.53473 0.900563 R^2 Q(20) 11.9514 0.91774 TR 2 8.58235 0.738128 R Information Criterion Statistics: AIC BIC SIC HQIC -5.16398 -5.13507 -5.16405 -5.15288 > model2@sigma.t[809:813] [1] 0.0145 0.0144 0.0144 0.0142 0.0150 > model2@residuals [809:813] [1] -0.0101 -0.0111 -0.0013 0.0355 -0.0274 (4) Model 3: GARCH(2, 2) model with Student-t innovations > model3 = garchFit( garch (2,2),data=r, cond.dist="std", trace=FALSE) > summary(model3) Title: GARCH Modelling Call: garchFit (formula trace = FALSE) = garch (2, 2), data = r, cond.dist = "std", Mean and Variance Equation: data garch (2, 2) [data = r] Conditional Distribution: std Coefficient (s): mu omega 1.7597e-03 1.9533e-05 alpha1 8.5937e-02 2.0207e-03 Std. Errors: based on Hessian alpha2 beta1 beta2 shape 1.0000e-08 8.5846e-01 6.2003e+00 Error Analysis: mu Estimate Std. Error t value Pr(>/t/) 1.760e-03 5.898e-04 omega 1.953e-05 alpha1 8.594e-02 alpha2 2.021e-03 3.912e-05 2.983 0.00285 ** 0.499 0.61758 6.281e-02 1.368 0.17123 3.805e-02 1.145e-01 beta1 1.000e-08 beta2 8.585e-01 9.204e-02 shape 6.200e+00 1.287e+00 0.053 0.95765 0.000 1.00000 9.327 <2e-16 *** 4.816 1.46e-06 *** Signif. codes: O *** 0.001 ** 0.01 * 0.05 0.1 1 Log Likelihood: 2106.63 normalized: 2.59118 Standardised Residuals Tests: Statistic p-value 373.896 0 0.974125 8.11435e-11 Jarque-Bera Test R Chi-2 Shapiro-Wilk Test R W R Q(10) 10.656 0.384935 Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test LM Arch Test R Q(15) 12.3735 0.65057 R Q(20) 18.8254 0.5332 R^2 Q(10) 3.55055 0.965354 R^2 Q(15) 4.49121 0.995628 R^2 Q(20) 6.15067 0.998678 R TR 2 4.06828 0.982172 Information Criterion Statistics: AIC BIC SIC HQIC -5.16515 -5.12467 -5.16530 -5.14961 > mode13@sigma.t [809:813] [1] 0.0177 0.0144 0.0173 0.0141 0.0196 > model3@residuals [809:813] [1] -0.0102 -0.0113 -0.0014 0.0354 -0.0276 6 (Model Selection, Estimation and Prediction of GARCH) Consider the daily returns rt of General Electric Company stock (ticker: "GE") from "2021-01-01" to "2024-03-31", comprising a total of 813 daily returns. Using the "fGarch" package of R, outputs of fitting three GARCH models to the returns are given at the end of this question. Model 1 ARCH (1) with standard normal innovations; Model 2 Model 3 GARCH (1, 1) with Student-t innovations; GARCH (2, 2) with Student-t innovations; Based on the outputs, answer the following questions. (a) What can be inferred from the Standardized Residual Tests conducted on Model 1? (b) Which model do you recommend for prediction between Model 2 and Model 3? Why? (c) Write down the fitted model for the model that you recommended in Part (b). (d) Using the model recommended in Part (b), predict the conditional volatility in the next trading day, specifically trading day 814.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter4: Eigenvalues And Eigenvectors
Section4.6: Applications And The Perron-frobenius Theorem
Problem 25EQ
icon
Related questions
Question
R outputs for Question 6.
(1) Data input
> library(tseries)
> P = get. hist. quote (instrument = "GE", start="2021-01-01",
+ end= "2024-03-31",
+
quote = c("Adj Close"), provider
=
"yahoo", compression = "d")
time series starts 2021-01-04
time series ends 2024-03-28
> r = diff (as.matrix (log(P)))
>rna.omit(r)
> length (r)
[1] 813
> r[809:813]
[1] -0.0085 -0.0095 0.0003 0.0372 -0.0258
(2) Model 1: ARCH (2) model with Student-t innovations
> model = garchFit (~ garch (2,0),data=r, cond.dist="std", trace=FALSE)
> summary (model)
Title:
GARCH Modelling
Call:
garchFit (formula = garch (2, 0), data = r, cond.dist = "std",
trace = FALSE)
Coefficient (s):
mu
omega
alpha1
alpha2
shape
0.00222
0.00125 0.13373
0.28380 3.60533
Error Analysis:
Estimate Std. Error t value Pr(>/t/)
mu
0.00222
omega 0.00125
alpha1 0.13373
alpha2 0.28380 0.0770380
0.0008828
2.525 0.01156 *
0.0001510
8.285 2.22e-16 ***
0.0470310
2.843 0.00446 **
3.684
0.00023 ***
shape 3.60533 0.4081007
8.834 < 2e-16 ***
Signif. codes: 0*** 0.001 ** 0.01 * 0.05 0.1 1
Log Likelihood:
2454.99
normalized: 1.86125
Standardised Residuals Tests:
Statistic p-value
Jarque-Bera Test R
Chi-2
396.094 0
Shapiro-Wilk Test R
W
0.96440 0
Ljung-Box Test
R
Q(10) 14.3254
0.158659
Ljung-Box Test
R
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
LM Arch Test
R
Q(15) 19.718
Q(20) 29.618
0.18302
R 2 Q(10) 15.6807
R^2 Q(15) 34.3686
R^2 Q(20) 46.0913
R TR 2 24.3045
0.0762852
0.109145
0.00302187
0.000783077
0.018485
Information Criterion Statistics:
AIC
BIC
SIC
HQIC
-3.71492 -3.69527 -3.71495 -3.70755
> model1@sigma.t[809:813]
[1] 0.0188 0.0185 0.0186 0.0183 0.0209
> model1@residuals [809:813]
[1] -0.0098 -0.0109 -0.0010
0.0358 -0.0272
(3) Model 2: GARCH(1, 1) model with Student-t innovations
> model2 = garchFit (~ garch (1,1),data=r, cond.dist="std", trace=FALSE)
> summary(model2)
Title:
GARCH Modelling
Call:
garchFit (formula = garch (1, 1), data = r, cond.dist = "std",
trace = FALSE)
Mean and Variance Equation:
data garch (1, 1)
<environment: 0x13fd76078>
[data = r]
Conditional Distribution:
std
Coefficient (s):
mu
omega
1.6222e-03
alpha1
betal
shape
6.5063e+00
1.9317e-06 2.1377e-02 9.7241e-01
Std. Errors:
based on Hessian
Error Analysis:
mu
Estimate
1.622e-03
Std. Error t value Pr(>|t|)
5.954e-04
omega 1.932e-06 2.093e-06
alpha1 2.138e-02 9.904e-03
2.724 0.00644 **
0.923 0.35599
2.158 0.03090 *
beta1
shape 6.506e+00 1.329e+00
9.724e-01 1.345e-02 72.312 <2e-16 ***
4.895 9.83e-07 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 0.1 1
Log Likelihood:
2104.16
normalized: 2.58814
Standardised Residuals Tests:
Statistic p-value
Jarque-Bera Test R
R
W
Chi-2 209.655 0
0.979421
2.75269e-09
Shapiro-Wilk Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
R Q(10) 13.0809 0.219186
R Q(15) 15.3775 0.42458
R Q(20) 21.8284 0.349893
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
LM Arch Test
R2 Q(10) 7.29837 0.697008
R^2 Q(15) 8.53473 0.900563
R^2 Q(20) 11.9514 0.91774
TR 2 8.58235 0.738128
R
Information Criterion Statistics:
AIC
BIC
SIC
HQIC
-5.16398 -5.13507 -5.16405 -5.15288
> model2@sigma.t[809:813]
[1] 0.0145 0.0144 0.0144 0.0142 0.0150
> model2@residuals [809:813]
[1] -0.0101 -0.0111 -0.0013 0.0355 -0.0274
(4) Model 3: GARCH(2, 2) model with Student-t innovations
> model3 = garchFit( garch (2,2),data=r, cond.dist="std", trace=FALSE)
> summary(model3)
Title:
GARCH Modelling
Call:
garchFit (formula
trace = FALSE)
=
garch (2, 2), data = r, cond.dist = "std",
Mean and Variance Equation:
data garch (2, 2)
<environment: Ox162799bd8>
[data
= r]
Conditional Distribution:
std
Coefficient (s):
mu
omega
1.7597e-03 1.9533e-05
alpha1
8.5937e-02 2.0207e-03
Std. Errors:
based on Hessian
alpha2
beta1
beta2
shape
1.0000e-08
8.5846e-01 6.2003e+00
Error Analysis:
mu
Estimate Std. Error t value Pr(>/t/)
1.760e-03 5.898e-04
omega 1.953e-05
alpha1 8.594e-02
alpha2 2.021e-03
3.912e-05
2.983 0.00285 **
0.499 0.61758
6.281e-02
1.368 0.17123
3.805e-02
1.145e-01
beta1 1.000e-08
beta2 8.585e-01 9.204e-02
shape 6.200e+00 1.287e+00
0.053 0.95765
0.000 1.00000
9.327 <2e-16 ***
4.816 1.46e-06 ***
Signif. codes: O *** 0.001 ** 0.01 * 0.05 0.1 1
Log Likelihood:
2106.63
normalized: 2.59118
Standardised Residuals Tests:
Statistic p-value
373.896 0
0.974125 8.11435e-11
Jarque-Bera Test
R
Chi-2
Shapiro-Wilk Test
R
W
R Q(10) 10.656
0.384935
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
LM Arch Test
R Q(15) 12.3735
0.65057
R Q(20) 18.8254 0.5332
R^2 Q(10) 3.55055 0.965354
R^2 Q(15) 4.49121 0.995628
R^2 Q(20) 6.15067 0.998678
R
TR 2 4.06828 0.982172
Information Criterion Statistics:
AIC
BIC
SIC
HQIC
-5.16515 -5.12467 -5.16530 -5.14961
> mode13@sigma.t [809:813]
[1] 0.0177 0.0144 0.0173 0.0141 0.0196
> model3@residuals [809:813]
[1] -0.0102 -0.0113 -0.0014 0.0354 -0.0276
Transcribed Image Text:R outputs for Question 6. (1) Data input > library(tseries) > P = get. hist. quote (instrument = "GE", start="2021-01-01", + end= "2024-03-31", + quote = c("Adj Close"), provider = "yahoo", compression = "d") time series starts 2021-01-04 time series ends 2024-03-28 > r = diff (as.matrix (log(P))) >rna.omit(r) > length (r) [1] 813 > r[809:813] [1] -0.0085 -0.0095 0.0003 0.0372 -0.0258 (2) Model 1: ARCH (2) model with Student-t innovations > model = garchFit (~ garch (2,0),data=r, cond.dist="std", trace=FALSE) > summary (model) Title: GARCH Modelling Call: garchFit (formula = garch (2, 0), data = r, cond.dist = "std", trace = FALSE) Coefficient (s): mu omega alpha1 alpha2 shape 0.00222 0.00125 0.13373 0.28380 3.60533 Error Analysis: Estimate Std. Error t value Pr(>/t/) mu 0.00222 omega 0.00125 alpha1 0.13373 alpha2 0.28380 0.0770380 0.0008828 2.525 0.01156 * 0.0001510 8.285 2.22e-16 *** 0.0470310 2.843 0.00446 ** 3.684 0.00023 *** shape 3.60533 0.4081007 8.834 < 2e-16 *** Signif. codes: 0*** 0.001 ** 0.01 * 0.05 0.1 1 Log Likelihood: 2454.99 normalized: 1.86125 Standardised Residuals Tests: Statistic p-value Jarque-Bera Test R Chi-2 396.094 0 Shapiro-Wilk Test R W 0.96440 0 Ljung-Box Test R Q(10) 14.3254 0.158659 Ljung-Box Test R Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test LM Arch Test R Q(15) 19.718 Q(20) 29.618 0.18302 R 2 Q(10) 15.6807 R^2 Q(15) 34.3686 R^2 Q(20) 46.0913 R TR 2 24.3045 0.0762852 0.109145 0.00302187 0.000783077 0.018485 Information Criterion Statistics: AIC BIC SIC HQIC -3.71492 -3.69527 -3.71495 -3.70755 > model1@sigma.t[809:813] [1] 0.0188 0.0185 0.0186 0.0183 0.0209 > model1@residuals [809:813] [1] -0.0098 -0.0109 -0.0010 0.0358 -0.0272 (3) Model 2: GARCH(1, 1) model with Student-t innovations > model2 = garchFit (~ garch (1,1),data=r, cond.dist="std", trace=FALSE) > summary(model2) Title: GARCH Modelling Call: garchFit (formula = garch (1, 1), data = r, cond.dist = "std", trace = FALSE) Mean and Variance Equation: data garch (1, 1) <environment: 0x13fd76078> [data = r] Conditional Distribution: std Coefficient (s): mu omega 1.6222e-03 alpha1 betal shape 6.5063e+00 1.9317e-06 2.1377e-02 9.7241e-01 Std. Errors: based on Hessian Error Analysis: mu Estimate 1.622e-03 Std. Error t value Pr(>|t|) 5.954e-04 omega 1.932e-06 2.093e-06 alpha1 2.138e-02 9.904e-03 2.724 0.00644 ** 0.923 0.35599 2.158 0.03090 * beta1 shape 6.506e+00 1.329e+00 9.724e-01 1.345e-02 72.312 <2e-16 *** 4.895 9.83e-07 *** Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 0.1 1 Log Likelihood: 2104.16 normalized: 2.58814 Standardised Residuals Tests: Statistic p-value Jarque-Bera Test R R W Chi-2 209.655 0 0.979421 2.75269e-09 Shapiro-Wilk Test Ljung-Box Test Ljung-Box Test Ljung-Box Test R Q(10) 13.0809 0.219186 R Q(15) 15.3775 0.42458 R Q(20) 21.8284 0.349893 Ljung-Box Test Ljung-Box Test Ljung-Box Test LM Arch Test R2 Q(10) 7.29837 0.697008 R^2 Q(15) 8.53473 0.900563 R^2 Q(20) 11.9514 0.91774 TR 2 8.58235 0.738128 R Information Criterion Statistics: AIC BIC SIC HQIC -5.16398 -5.13507 -5.16405 -5.15288 > model2@sigma.t[809:813] [1] 0.0145 0.0144 0.0144 0.0142 0.0150 > model2@residuals [809:813] [1] -0.0101 -0.0111 -0.0013 0.0355 -0.0274 (4) Model 3: GARCH(2, 2) model with Student-t innovations > model3 = garchFit( garch (2,2),data=r, cond.dist="std", trace=FALSE) > summary(model3) Title: GARCH Modelling Call: garchFit (formula trace = FALSE) = garch (2, 2), data = r, cond.dist = "std", Mean and Variance Equation: data garch (2, 2) <environment: Ox162799bd8> [data = r] Conditional Distribution: std Coefficient (s): mu omega 1.7597e-03 1.9533e-05 alpha1 8.5937e-02 2.0207e-03 Std. Errors: based on Hessian alpha2 beta1 beta2 shape 1.0000e-08 8.5846e-01 6.2003e+00 Error Analysis: mu Estimate Std. Error t value Pr(>/t/) 1.760e-03 5.898e-04 omega 1.953e-05 alpha1 8.594e-02 alpha2 2.021e-03 3.912e-05 2.983 0.00285 ** 0.499 0.61758 6.281e-02 1.368 0.17123 3.805e-02 1.145e-01 beta1 1.000e-08 beta2 8.585e-01 9.204e-02 shape 6.200e+00 1.287e+00 0.053 0.95765 0.000 1.00000 9.327 <2e-16 *** 4.816 1.46e-06 *** Signif. codes: O *** 0.001 ** 0.01 * 0.05 0.1 1 Log Likelihood: 2106.63 normalized: 2.59118 Standardised Residuals Tests: Statistic p-value 373.896 0 0.974125 8.11435e-11 Jarque-Bera Test R Chi-2 Shapiro-Wilk Test R W R Q(10) 10.656 0.384935 Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test Ljung-Box Test LM Arch Test R Q(15) 12.3735 0.65057 R Q(20) 18.8254 0.5332 R^2 Q(10) 3.55055 0.965354 R^2 Q(15) 4.49121 0.995628 R^2 Q(20) 6.15067 0.998678 R TR 2 4.06828 0.982172 Information Criterion Statistics: AIC BIC SIC HQIC -5.16515 -5.12467 -5.16530 -5.14961 > mode13@sigma.t [809:813] [1] 0.0177 0.0144 0.0173 0.0141 0.0196 > model3@residuals [809:813] [1] -0.0102 -0.0113 -0.0014 0.0354 -0.0276
6 (Model Selection, Estimation and Prediction of GARCH) Consider the daily returns rt
of General Electric Company stock (ticker: "GE") from "2021-01-01" to "2024-03-31",
comprising a total of 813 daily returns. Using the "fGarch" package of R, outputs of
fitting three GARCH models to the returns are given at the end of this question.
Model 1 ARCH (1) with standard normal innovations;
Model 2
Model 3
GARCH (1, 1) with Student-t innovations;
GARCH (2, 2) with Student-t innovations;
Based on the outputs, answer the following questions.
(a) What can be inferred from the Standardized Residual Tests conducted on Model 1?
(b) Which model do you recommend for prediction between Model 2 and Model 3?
Why?
(c) Write down the fitted model for the model that you recommended in Part (b).
(d) Using the model recommended in Part (b), predict the conditional volatility in the
next trading day, specifically trading day 814.
Transcribed Image Text:6 (Model Selection, Estimation and Prediction of GARCH) Consider the daily returns rt of General Electric Company stock (ticker: "GE") from "2021-01-01" to "2024-03-31", comprising a total of 813 daily returns. Using the "fGarch" package of R, outputs of fitting three GARCH models to the returns are given at the end of this question. Model 1 ARCH (1) with standard normal innovations; Model 2 Model 3 GARCH (1, 1) with Student-t innovations; GARCH (2, 2) with Student-t innovations; Based on the outputs, answer the following questions. (a) What can be inferred from the Standardized Residual Tests conducted on Model 1? (b) Which model do you recommend for prediction between Model 2 and Model 3? Why? (c) Write down the fitted model for the model that you recommended in Part (b). (d) Using the model recommended in Part (b), predict the conditional volatility in the next trading day, specifically trading day 814.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt