Concept explainers
A random sample of 10 items is drawn from a population whose standard deviation is unknown. The sample
- a. Construct an
interval estimate of μ with 95 percent confidence. - b. Repeat part a assuming that n = 20.
- c. Repeat part a assuming that n = 40.
- d. Describe how the confidence interval changes as n increases.
a.
Using the value of student’s t from Appendix D, construct a 95% confidence interval estimate for
Answer to Problem 21SE
The 95% confidence interval estimate for
Explanation of Solution
Calculation:
The given information is that a random sample of 10 items is drawn from a population whose standard deviation is unknown. The sample mean is 270 and sample standard deviation is 20.
Since, the population standard deviation is unknown; the sampling distribution is t-distribution.
Confidence interval:
The confidence interval estimate for
where
The degrees of freedom for the test is 9
Procedure the value of Student’s t using Appendix D:
- Go through the row corresponding to the degrees of freedom 9 in Appendix D of student’s t critical values.
- Go through the row corresponding to 9 and column corresponding to the confidence level 0.95.
- Obtain the value corresponding to (9, 0.95) from the table.
Thus, the value
Substitute
Thus, the 95% confidence interval estimate for
b.
Using the value of student’s t from Appendix D, construct a 95% confidence interval estimate for
Answer to Problem 21SE
The 95% confidence interval estimate for
Explanation of Solution
Calculation:
The given information is that a random sample of 20 items is drawn from a population whose standard deviation is unknown. The sample mean is 270 and sample standard deviation is 20.
Since, the population standard deviation is unknown; the sampling distribution is t-distribution.
The degrees of freedom for the test is 19
Procedure the value of Student’s t using Appendix D:
- Go through the row corresponding to the degrees of freedom 19 in Appendix D of student’s t critical values.
- Go through the row corresponding to 19 and column corresponding to the confidence level 0.95.
- Obtain the value corresponding to (19, 0.95) from the table.
Thus, the value
Substitute
Thus, the 95% confidence interval estimate for
c.
Using the value of student’s t from Appendix D, construct a 95% confidence interval estimate for
Answer to Problem 21SE
The 95% confidence interval estimate for
Explanation of Solution
Calculation:
The given information is that a random sample of 40 items is drawn from a population whose standard deviation is unknown. The sample mean is 270 and sample standard deviation is 20.
Since, the population standard deviation is unknown; the sampling distribution is t-distribution.
The degrees of freedom for the test is 39
Procedure the value of Student’s t using Appendix D:
- Go through the row corresponding to the degrees of freedom 39 in Appendix D of student’s t critical values.
- Go through the row corresponding to 39 and column corresponding to the confidence level 0.95.
- Obtain the value corresponding to (39, 0.95) from the table.
Thus, the value
Substitute
Thus, the 95% confidence interval estimate for
d.
Explain how the intervals changes as the sample size increases.
Explanation of Solution
As the sample size increases the width of the confidence interval decreases. From the results obtained in parts (a), (b) and (c), the 95% confidence interval for a sample of size 10 is wider than confidence interval for a sample of size 20 which is again wider l for a sample of size 40. A greater confidence implies a greater margin of error or there will be a loss of precision. Since the confidence interval becomes narrower, precise values can be obtained.
Thus, as the confidence level decreases the sample size increases.
Want to see more full solutions like this?
Chapter 8 Solutions
Applied Statistics in Business and Economics
- 2,3, ample and rical t? the 28 Suppose that a mound-shaped data set has a mean of 10 and standard deviation of 2. a. About what percentage of the data should lie between 8 and 12? b. About what percentage of the data should lie above 10? c. About what percentage of the data should lie above 12?arrow_forward27 Suppose that you have a data set of 1, 2, 2, 3, 3, 3, 4, 4, 5, and you assume that this sample represents a population. The mean is 3 and g the standard deviation is 1.225.10 a. Explain why you can apply the empirical rule to this data set. b. Where would "most of the values" in the population fall, based on this data set?arrow_forward30 Explain how you can use the empirical rule to find out whether a data set is mound- shaped, using only the values of the data themselves (no histogram available).arrow_forward
- 5. Let X be a positive random variable with finite variance, and let A = (0, 1). Prove that P(X AEX) 2 (1-A)² (EX)² EX2arrow_forward6. Let, for p = (0, 1), and xe R. X be a random variable defined as follows: P(X=-x) = P(X = x)=p. P(X=0)= 1-2p. Show that there is equality in Chebyshev's inequality for X. This means that Chebyshev's inequality, in spite of being rather crude, cannot be improved without additional assumptions.arrow_forward4. Prove that, for any random variable X, the minimum of EIX-al is attained for a = med (X).arrow_forward
- 8. Recall, from Sect. 2.16.4, the likelihood ratio statistic, Ln, which was defined as a product of independent, identically distributed random variables with mean 1 (under the so-called null hypothesis), and the, sometimes more convenient, log-likelihood, log L, which was a sum of independent, identically distributed random variables, which, however, do not have mean log 1 = 0. (a) Verify that the last claim is correct, by proving the more general statement, namely that, if Y is a non-negative random variable with finite mean, then E(log Y) log(EY). (b) Prove that, in fact, there is strict inequality: E(log Y) < log(EY), unless Y is degenerate. (c) Review the proof of Jensen's inequality, Theorem 5.1. Generalize with a glimpse on (b).arrow_forward3. Prove that, for any random variable X, the minimum of E(X - a)² is attained for a = EX. Provedarrow_forward7. Cantelli's inequality. Let X be a random variable with finite variance, o². (a) Prove that, for x ≥ 0, P(X EX2x)≤ 02 x² +0² 202 P(|X - EX2x)<≤ (b) Find X assuming two values where there is equality. (c) When is Cantelli's inequality better than Chebyshev's inequality? (d) Use Cantelli's inequality to show that med (X) - EX ≤ o√√3; recall, from Proposition 6.1, that an application of Chebyshev's inequality yields the bound o√√2. (e) Generalize Cantelli's inequality to moments of order r 1.arrow_forward
- The college hiking club is having a fundraiser to buy new equipment for fall and winter outings. The club is selling Chinese fortune cookies at a price of $2 per cookie. Each cookie contains a piece of paper with a different number written on it. A random drawing will determine which number is the winner of a dinner for two at a local Chinese restaurant. The dinner is valued at $32. Since fortune cookies are donated to the club, we can ignore the cost of the cookies. The club sold 718 cookies before the drawing. Lisa bought 13 cookies. Lisa's expected earnings can be found by multiplying the value of the dinner by the probability that she will win. What are Lisa's expected earnings? Round your answer to the nearest cent.arrow_forwardThe Honolulu Advertiser stated that in Honolulu there was an average of 659 burglaries per 400,000 households in a given year. In the Kohola Drive neighborhood there are 321 homes. Let r be the number of homes that will be burglarized in a year. Use the formula for Poisson distribution. What is the value of p, the probability of success, to four decimal places?arrow_forwardThe college hiking club is having a fundraiser to buy new equipment for fall and winter outings. The club is selling Chinese fortune cookies at a price of $2 per cookie. Each cookie contains a piece of paper with a different number written on it. A random drawing will determine which number is the winner of a dinner for two at a local Chinese restaurant. The dinner is valued at $32. Since fortune cookies are donated to the club, we can ignore the cost of the cookies. The club sold 718 cookies before the drawing. Lisa bought 13 cookies. Lisa's expected earnings can be found by multiplying the value of the dinner by the probability that she will win. What are Lisa's expected earnings? Round your answer to the nearest cent.arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning