Concept explainers
To express:
A binary number into a hexadecimal number.

Answer to Problem 17A
Hexadecimal number is C94B.92416.
Explanation of Solution
Given information:
A binary number 1100100101001011.10010010012.
Calculation:
Binary number system uses the number 2 as its base. Therefore, it has 2 symbols: The numbers are 0 and 1.
And a hexadecimal number system uses the number 16 as its base, i.e., it has 16 symbols. The hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.
Binary numbers are represented as from hexadecimal number
Binary | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
Decimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Hexadecimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Binary | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Decimal | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Hexadecimal | 8 | 9 | A | B | C | D | E | F |
Each hexadecimal digit consists of 4 binary digits.
For example, hexadecimal number 9 is equal to binary number 1001.
For converting integer part of binary number into hexadecimal number, write down the binary number and represent four binary digits from right by its hexadecimal digit from the table.
Then combine all the digits together.
For converting fractional part of binary number into hexadecimal number, write down the binary number and represent four binary digits from left by its hexadecimal digit from the table.
Then combine all the digits together.
Finally, hexadecimal number is combination of both integer and fractional part.
Hexadecimal digits are equal to the summation of 2n where n = 0, 1, 2 and 3 (position from right).
For example, 9 = 23+20. In this example, 21 and 22are not there. So, at position 1 and 2, binary digit is zero, and at position 0 and 3, binary digit is one. Therefore, hexadecimal of binary 1001 is
The hexadecimal number is equal to the summation of binary digits dn × 2n
Divide the binary number into block of four digits. If four digits are not there, then add additional zero in binary number. For example, 11 is written as 0011 and .11 is written as .1100.
Hexadecimal of binary number 1100100101001011.10010010012 is (Starting from right for integer part and starting from left for fractional part)
Want to see more full solutions like this?
Chapter 85 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
- Evaluate the line integral sin z dz, So sin where C is the portion of the curve y = x² from 0 to −1 + i.arrow_forwardLet f(z) be complex differentiable everywhere in C. Fix two distinct complex numbers a and b and a circle C of radius R with |a| < R,|b| < R traversed in the counter-clockwise direction. Evaluate the integral Sc − f(z)dz (z - a)(z – b) in terms of a, b and the values of f at those points.arrow_forward| Let C be a circle (with a positive radius) such that z = 1 lies in its interior. Evaluate the contour integral So Tz zez (z - 1)³ = where C is traversed in the clockwise direction. dzarrow_forward
- not use ai pleasearrow_forwardIf you are using chatgpt leave it I will downvote .arrow_forwardTemperature measurements are based on the transfer of heat between the sensor of a measuring device (such as an ordinary thermometer or the gasket of a thermocouple) and the medium whose temperature is to be measured. Once the sensor or thermometer is brought into contact with the medium, the sensor quickly receives (or loses, if warmer) heat and reaches thermal equilibrium with the medium. At that point the medium and the sensor are at the same temperature. The time required for thermal equilibrium to be established can vary from a fraction of a second to several minutes. Due to its small size and high conductivity it can be assumed that the sensor is at a uniform temperature at all times, and Newton's cooling law is applicable. Thermocouples are commonly used to measure the temperature of gas streams. The characteristics of the thermocouple junction and the gas stream are such that λ = hA/mc 0.02s-1. Initially, the thermocouple junction is at a temperature Ti and the gas stream at…arrow_forward
- 3) Recall that the power set of a set A is the set of all subsets of A: PA = {S: SC A}. Prove the following proposition. АСВ РАСРВarrow_forwardA sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forward3) Find the surface area of z -1≤ y ≤1 = 1 + x + y + x2 over the rectangle −2 ≤ x ≤ 1 and - Solution: TYPE YOUR SOLUTION HERE! ALSO: Generate a plot of the surface in Mathematica and include that plot in your solution!arrow_forward
- 7. Walkabout. Does this graph have an Euler circuit? If so, find one. If not, explain why not.arrow_forwardBelow, let A, B, and C be sets. 1) Prove (AUB) nC = (ANC) U (BNC).arrow_forwardA sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
